IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v190y2021ics0308521x21000536.html
   My bibliography  Save this article

Sustainable N fertilizer production based on a loop: Straw - biogas – ‘Haber-Bosch’ process

Author

Listed:
  • Bertilsson, Göte O.B.
  • Kirchmann, Holger

Abstract

A concept was presented to produce N fertilizer by digesting straw in a biogas plant and transporting bio-methane to a fertilizer plant through a gas grid substituting natural gas.

Suggested Citation

  • Bertilsson, Göte O.B. & Kirchmann, Holger, 2021. "Sustainable N fertilizer production based on a loop: Straw - biogas – ‘Haber-Bosch’ process," Agricultural Systems, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:agisys:v:190:y:2021:i:c:s0308521x21000536
    DOI: 10.1016/j.agsy.2021.103100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X21000536
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2021.103100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rafiqul, Islam & Weber, Christoph & Lehmann, Bianca & Voss, Alfred, 2005. "Energy efficiency improvements in ammonia production—perspectives and uncertainties," Energy, Elsevier, vol. 30(13), pages 2487-2504.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Yufeng & Yang, Bin & Wang, Yapeng & Zheng, Zipeng & Wang, Jinwei & Yue, Yaping & Mu, Wenlong & Xu, Guangyin & Jilai Ying,, 2023. "Emergy evaluation of biogas production system in China from perspective of collection radius," Energy, Elsevier, vol. 265(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Ramírez & Martin K. Patel & Kornelis Blok, 2011. "Using Physical Indicators to Monitor Energy Efficiency in Energy-Extensive Sectors," Chapters, in: Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder (ed.), Improving Energy Efficiency through Technology, chapter 4, Edward Elgar Publishing.
    2. Michalsky, Ronald & Parman, Bryon J. & Amanor-Boadu, Vincent & Pfromm, Peter H., 2012. "Solar thermochemical production of ammonia from water, air and sunlight: Thermodynamic and economic analyses," Energy, Elsevier, vol. 42(1), pages 251-260.
    3. Talaei, Alireza & Ahiduzzaman, Md. & Kumar, Amit, 2018. "Assessment of long-term energy efficiency improvement and greenhouse gas emissions mitigation potentials in the chemical sector," Energy, Elsevier, vol. 153(C), pages 231-247.
    4. Muhammad Aziz & Agung Tri Wijayanta & Asep Bayu Dani Nandiyanto, 2020. "Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization," Energies, MDPI, vol. 13(12), pages 1-25, June.
    5. Sarkar, Susanjib & Kumar, Amit & Sultana, Arifa, 2011. "Biofuels and biochemicals production from forest biomass in Western Canada," Energy, Elsevier, vol. 36(10), pages 6251-6262.
    6. Flórez-Orrego, Daniel & de Oliveira Junior, Silvio, 2016. "On the efficiency, exergy costs and CO2 emission cost allocation for an integrated syngas and ammonia production plant," Energy, Elsevier, vol. 117(P2), pages 341-360.
    7. Zhou, Wenji & Zhu, Bing & Li, Qiang & Ma, Tieju & Hu, Shanying & Griffy-Brown, Charla, 2010. "CO2 emissions and mitigation potential in China's ammonia industry," Energy Policy, Elsevier, vol. 38(7), pages 3701-3709, July.
    8. Kirova-Yordanova, Zornitza, 2017. "Exergy-based estimation and comparison of urea and ammonium nitrate production efficiency and environmental impact," Energy, Elsevier, vol. 140(P1), pages 158-169.
    9. Wang, Xiaoyu & Su, Mingze & Zhao, Haibo, 2021. "Process design and exergy cost analysis of a chemical looping ammonia generation system using AlN/Al2O3 as a nitrogen carrier," Energy, Elsevier, vol. 230(C).
    10. Nordborg, Maria & Berndes, Göran & Dimitriou, Ioannis & Henriksson, Annika & Mola-Yudego, Blas & Rosenqvist, Håkan, 2018. "Energy analysis of willow production for bioenergy in Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 473-482.
    11. Brandenburg, Marcus, 2017. "A hybrid approach to configure eco-efficient supply chains under consideration of performance and risk aspects," Omega, Elsevier, vol. 70(C), pages 58-76.
    12. Alizadeh, Reza & Lund, Peter D. & Soltanisehat, Leili, 2020. "Outlook on biofuels in future studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Liu, Xiaoyu & Chen, Dingjiang & Zhang, Wenjun & Qin, Weizhong & Zhou, Wenji & Qiu, Tong & Zhu, Bing, 2013. "An assessment of the energy-saving potential in China's petroleum refining industry from a technical perspective," Energy, Elsevier, vol. 59(C), pages 38-49.
    14. Flórez-Orrego, Daniel & de Oliveira Junior, Silvio, 2017. "Modeling and optimization of an industrial ammonia synthesis unit: An exergy approach," Energy, Elsevier, vol. 137(C), pages 234-250.
    15. Rao, Xufeng & Liu, Minmin & Chien, Meifang & Inoue, Chihiro & Zhang, Jiujun & Liu, Yuyu, 2022. "Recent progress in noble metal electrocatalysts for nitrogen-to-ammonia conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    16. Penkuhn, Mathias & Tsatsaronis, George, 2017. "Comparison of different ammonia synthesis loop configurations with the aid of advanced exergy analysis," Energy, Elsevier, vol. 137(C), pages 854-864.
    17. McKenna, R.C. & Norman, J.B., 2010. "Spatial modelling of industrial heat loads and recovery potentials in the UK," Energy Policy, Elsevier, vol. 38(10), pages 5878-5891, October.
    18. Fang, Jing & Xiong, Chuhao & Feng, Mingqian & Wu, Ye & Liu, Dong, 2022. "Utilization of carbon-based energy as raw material instead of fuel with low CO2 emissions: Energy analyses and process integration of chemical looping ammonia generation," Applied Energy, Elsevier, vol. 312(C).
    19. Tian, Jinping & Shi, Han & Li, Xing & Chen, Lujun, 2012. "Measures and potentials of energy-saving in a Chinese fine chemical industrial park," Energy, Elsevier, vol. 46(1), pages 459-470.
    20. Hayashi, Daisuke & Krey, Matthias, 2007. "Assessment of clean development mechanism potential of large-scale energy efficiency measures in heavy industries," Energy, Elsevier, vol. 32(10), pages 1917-1931.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:190:y:2021:i:c:s0308521x21000536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.