A 3D distributed circuit-electrochemical model for the inner inhomogeneity of lithium-ion battery
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2022.120390
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Shunli & Takyi-Aninakwa, Paul & Jin, Siyu & Yu, Chunmei & Fernandez, Carlos & Stroe, Daniel-Ioan, 2022. "An improved feedforward-long short-term memory modeling method for the whole-life-cycle state of charge prediction of lithium-ion batteries considering current-voltage-temperature variation," Energy, Elsevier, vol. 254(PA).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rodríguez-Iturriaga, Pablo & García, Víctor Manuel & Rodríguez-Bolívar, Salvador & Valdés, Enrique Ernesto & Anseán, David & López-Villanueva, Juan Antonio, 2024. "A coupled electrothermal lithium-ion battery reduced-order model including heat generation due to solid diffusion," Applied Energy, Elsevier, vol. 367(C).
- Zhang, Chengzhong & Zhao, Hongyu & Wang, Liye & Liao, Chenglin & Wang, Lifang, 2024. "A comparative study on state-of-charge estimation for lithium-rich manganese-based battery based on Bayesian filtering and machine learning methods," Energy, Elsevier, vol. 306(C).
- Rodríguez-Iturriaga, Pablo & Anseán, David & Rodríguez-Bolívar, Salvador & García, Víctor Manuel & González, Manuela & López-Villanueva, Juan Antonio, 2024. "Modeling current-rate effects in lithium-ion batteries based on a distributed, multi-particle equivalent circuit model," Applied Energy, Elsevier, vol. 353(PA).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shi, Haotian & Wang, Shunli & Huang, Qi & Fernandez, Carlos & Liang, Jianhong & Zhang, Mengyun & Qi, Chuangshi & Wang, Liping, 2024. "Improved electric-thermal-aging multi-physics domain coupling modeling and identification decoupling of complex kinetic processes based on timescale quantification in lithium-ion batteries," Applied Energy, Elsevier, vol. 353(PB).
- Peng Song & Zhisheng Zhang, 2023. "Research on Multiple Load Short-Term Forecasting Model of Integrated Energy Distribution System Based on Mogrifier-Quantum Weighted MELSTM," Energies, MDPI, vol. 16(9), pages 1-13, April.
- Choon Kit Chan & Chi Hong Chung & Jeyagopi Raman, 2023. "Optimizing Thermal Management System in Electric Vehicle Battery Packs for Sustainable Transportation," Sustainability, MDPI, vol. 15(15), pages 1-14, August.
- Ta, Yuntian & Li, Yanfeng & Cai, Wenan & Zhang, Qianqian & Wang, Zhijian & Dong, Lei & Du, Wenhua, 2023. "Adaptive staged remaining useful life prediction method based on multi-sensor and multi-feature fusion," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
- Wang, Fu-Kwun & Kebede, Getnet Awoke & Lo, Shih-Che & Woldegiorgis, Bereket Haile, 2024. "An embedding layer-based quantum long short-term memory model with transfer learning for proton exchange membrane fuel stack remaining useful life prediction," Energy, Elsevier, vol. 308(C).
- Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiaoyong & Fernandez, Carlos, 2022. "An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 326(C).
- He, Qijiao & Li, Zheng & Zhao, Dongqi & Yu, Jie & Tan, Peng & Guo, Meiting & Liao, Tianjun & Zhao, Tianshou & Ni, Meng, 2023. "A 3D modelling study on all vanadium redox flow battery at various operating temperatures," Energy, Elsevier, vol. 282(C).
- Wei, Yupeng & Wu, Dazhong, 2023. "Prediction of state of health and remaining useful life of lithium-ion battery using graph convolutional network with dual attention mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Liu, Zixi & Ruan, Guanqiang & Tian, Yupeng & Hu, Xing & Yan, Rong & Yang, Kuo, 2024. "A real-world battery state of charge prediction method based on a lightweight mixer architecture," Energy, Elsevier, vol. 311(C).
- Gu, Xinyu & See, K.W. & Li, Penghua & Shan, Kangheng & Wang, Yunpeng & Zhao, Liang & Lim, Kai Chin & Zhang, Neng, 2023. "A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model," Energy, Elsevier, vol. 262(PB).
- Fan, Tian-E & Liu, Song-Ming & Yang, Hao & Li, Peng-Hua & Qu, Baihua, 2023. "A fast active balancing strategy based on model predictive control for lithium-ion battery packs," Energy, Elsevier, vol. 279(C).
- Yang, Bowen & Wang, Dafang & Sun, Xu & Chen, Shiqin & Wang, Xingcheng, 2023. "Offline order recognition for state estimation of Lithium-ion battery using fractional order model," Applied Energy, Elsevier, vol. 341(C).
- Wang, Zhuoer & Zhang, Hongjuan & Li, Bijun & Fan, Xiaoyi & Ma, Zhenqiang & Zhou, Jian, 2024. "An IMFO-LSTM_BIGRU combined network for long-term multiple battery states prediction for electric vehicles," Energy, Elsevier, vol. 309(C).
- Zhang, Xiang & Liu, Peng & Lin, Ni & Zhang, Zhaosheng & Wang, Zhenpo, 2023. "A novel battery abnormality detection method using interpretable Autoencoder," Applied Energy, Elsevier, vol. 330(PB).
- Liu, Zhi-Feng & Huang, Ya-He & Zhang, Shu-Rui & Luo, Xing-Fu & Chen, Xiao-Rui & Lin, Jun-Jie & Tang, Yu & Guo, Liang & Li, Ji-Xiang, 2025. "A collaborative interaction gate-based deep learning model with optimal bandwidth adjustment strategies for lithium-ion battery capacity point-interval forecasting," Applied Energy, Elsevier, vol. 377(PD).
- Mayer, Martin János & Biró, Bence & Szücs, Botond & Aszódi, Attila, 2023. "Probabilistic modeling of future electricity systems with high renewable energy penetration using machine learning," Applied Energy, Elsevier, vol. 336(C).
- Li, Jizi & Liu, Fangbing & Zhang, Justin Z. & Tong, Zeping, 2023. "Optimal configuration of electric vehicle battery recycling system under across-network cooperation," Applied Energy, Elsevier, vol. 338(C).
- Couto, Luis. D. & Charkhgard, Mohammad & Karaman, Berke & Job, Nathalie & Kinnaert, Michel, 2023. "Lithium-ion battery design optimization based on a dimensionless reduced-order electrochemical model," Energy, Elsevier, vol. 263(PE).
- Li, Yuanmao & Liu, Guixiong & Deng, Wei & Li, Zuyu, 2024. "Comparative study on parameter identification of an electrochemical model for lithium-ion batteries via meta-heuristic methods," Applied Energy, Elsevier, vol. 367(C).
- Xu, Xiaodong & Tang, Shengjin & Han, Xuebing & Lu, Languang & Wu, Yu & Yu, Chuanqiang & Sun, Xiaoyan & Xie, Jian & Feng, Xuning & Ouyang, Minggao, 2023. "Fast capacity prediction of lithium-ion batteries using aging mechanism-informed bidirectional long short-term memory network," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
More about this item
Keywords
Lithium-ion battery; Lithium deposition; Distributed model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:331:y:2023:i:c:s0306261922016476. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.