IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v309y2024ics0360544224021248.html
   My bibliography  Save this article

CNN data-driven active distribution network: Integration research of topology reconstruction and optimal scheduling in multi-source uncertain environment

Author

Listed:
  • Lyu, Zhilin
  • Ni, Xingyu
  • Bai, Xiaoqing
  • Wang, Chongyang
  • Liu, Bin

Abstract

The access of high proportion of uncertain factors makes the operating conditions of active distribution network more complicated. In addition to the scheduling optimization of active management device, changing the network topology is also an effective way to improve the reliability of power supply and reduce cost. However, the integration of topology reconfiguration and scheduling makes the problem more complicated, and the solving speed is challenged. Therefore, an integrated decision-making method based on CNN data-driven is proposed. Firstly, by combining the conditions of network operation connectivity with the necessary conditions of topological radiation structure, the full constraint conditions of distribution network connectivity and radiation are obtained. Secondly, Monte Carlo stochastic method is used to simulate a variety of uncertain factors. By combining with the active management device scheduling model and taking the minimum total cost as the objective function, GUROBI solver is used to find optimal output of the active management device and optimal branch switch combination in various random scenarios, and a large amount of effective historical optimization data is obtained. The topology information is also marked as a topology label. Finally, the CNN is trained with node loads and uncertainty factors as input data and topology label and optimal scheduling as output data. The improved IEEE-33 node system is taken as a simulation example, and the results show that the topology reconfiguration can further reduce the power cost and improve the reliability of power supply on the basis of optimal scheduling; The integrated decision-making method based on CNN data-drive can quickly obtain the optimal output of active management device and the optimal topology without power flow calculation under various uncertain scenarios. The classification and regression prediction speeds of CNN are 886 times and 736 times faster than the GUROBI solver respectively.

Suggested Citation

  • Lyu, Zhilin & Ni, Xingyu & Bai, Xiaoqing & Wang, Chongyang & Liu, Bin, 2024. "CNN data-driven active distribution network: Integration research of topology reconstruction and optimal scheduling in multi-source uncertain environment," Energy, Elsevier, vol. 309(C).
  • Handle: RePEc:eee:energy:v:309:y:2024:i:c:s0360544224021248
    DOI: 10.1016/j.energy.2024.132350
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224021248
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132350?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Zhiwei & Zhao, Weicheng & Lin, Xiaoyong & Han, Yongming & Hu, Xuan & Yuan, Kui & Geng, Zhiqiang, 2024. "Load prediction of integrated energy systems for energy saving and carbon emission based on novel multi-scale fusion convolutional neural network," Energy, Elsevier, vol. 290(C).
    2. Yang, Zhichun & Yang, Fan & Min, Huaidong & Tian, Hao & Hu, Wei & Liu, Jian & Eghbalian, Nasrin, 2023. "Energy management programming to reduce distribution network operating costs in the presence of electric vehicles and renewable energy sources," Energy, Elsevier, vol. 263(PA).
    3. Azad-Farsani, Ehsan & Sardou, Iman Goroohi & Abedini, Saeed, 2021. "Distribution Network Reconfiguration based on LMP at DG connected busses using game theory and self-adaptive FWA," Energy, Elsevier, vol. 215(PB).
    4. Oh, Seok Hwa & Yoon, Yong Tae & Kim, Seung Wan, 2020. "Online reconfiguration scheme of self-sufficient distribution network based on a reinforcement learning approach," Applied Energy, Elsevier, vol. 280(C).
    5. Wang, Hong-Jiang & Pan, Jeng-Shyang & Nguyen, Trong-The & Weng, Shaowei, 2022. "Distribution network reconfiguration with distributed generation based on parallel slime mould algorithm," Energy, Elsevier, vol. 244(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hossein Lotfi & Mohammad Ebrahim Hajiabadi & Hossein Parsadust, 2024. "Power Distribution Network Reconfiguration Techniques: A Thorough Review," Sustainability, MDPI, vol. 16(23), pages 1-33, November.
    2. Li, J.Y. & Chen, J.J. & Wang, Y.X. & Chen, W.G., 2024. "Combining multi-step reconfiguration with many-objective reduction as iterative bi-level scheduling for stochastic distribution network," Energy, Elsevier, vol. 290(C).
    3. Aras Ghafoor & Jamal Aldahmashi & Judith Apsley & Siniša Djurović & Xiandong Ma & Mohamed Benbouzid, 2024. "Intelligent Integration of Renewable Energy Resources Review: Generation and Grid Level Opportunities and Challenges," Energies, MDPI, vol. 17(17), pages 1-29, September.
    4. Lu, Yu & Xiang, Yue & Huang, Yuan & Yu, Bin & Weng, Liguo & Liu, Junyong, 2023. "Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load," Energy, Elsevier, vol. 271(C).
    5. Zhao, Yincheng & Zhang, Guozhou & Hu, Weihao & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2023. "Meta-learning based voltage control strategy for emergency faults of active distribution networks," Applied Energy, Elsevier, vol. 349(C).
    6. Mohammad Javad Bordbari & Fuzhan Nasiri, 2024. "Networked Microgrids: A Review on Configuration, Operation, and Control Strategies," Energies, MDPI, vol. 17(3), pages 1-28, February.
    7. Lingling Hu & Junming Zhou & Feng Jiang & Guangming Xie & Jie Hu & Qinglie Mo, 2023. "Research on Optimization of Valley-Filling Charging for Vehicle Network System Based on Multi-Objective Optimization," Sustainability, MDPI, vol. 16(1), pages 1-25, December.
    8. Zhu, Ziqing & Hu, Ze & Chan, Ka Wing & Bu, Siqi & Zhou, Bin & Xia, Shiwei, 2023. "Reinforcement learning in deregulated energy market: A comprehensive review," Applied Energy, Elsevier, vol. 329(C).
    9. Chin, Min Yee & Qin, Yuting & Hoy, Zheng Xuan & Farooque, Aitazaz Ahsan & Wong, Keng Yinn & Mong, Guo Ren & Tan, Jian Ping & Woon, Kok Sin, 2024. "Assessing carbon budgets and reduction pathways in different income levels with neural network forecasting," Energy, Elsevier, vol. 305(C).
    10. Cao, Di & Zhao, Junbo & Hu, Weihao & Ding, Fei & Yu, Nanpeng & Huang, Qi & Chen, Zhe, 2022. "Model-free voltage control of active distribution system with PVs using surrogate model-based deep reinforcement learning," Applied Energy, Elsevier, vol. 306(PA).
    11. Ibrahim Salem Jahan & Vojtech Blazek & Stanislav Misak & Vaclav Snasel & Lukas Prokop, 2022. "Forecasting of Power Quality Parameters Based on Meteorological Data in Small-Scale Household Off-Grid Systems," Energies, MDPI, vol. 15(14), pages 1-20, July.
    12. Li, Ningning & Gao, Yan, 2023. "Real-time pricing based on convex hull method for smart grid with multiple generating units," Energy, Elsevier, vol. 285(C).
    13. Wang, Hong-Jiang & Pan, Jeng-Shyang & Nguyen, Trong-The & Weng, Shaowei, 2022. "Distribution network reconfiguration with distributed generation based on parallel slime mould algorithm," Energy, Elsevier, vol. 244(PB).
    14. Han, Yongming & Li, Zhiyi & Wei, Tingting & Zuo, Xiaoyu & Liu, Min & Ma, Bo & Geng, Zhiqiang, 2024. "Production capacity prediction based response conditions optimization of straw reforming using attention-enhanced convolutional LSTM integrating data expansion," Applied Energy, Elsevier, vol. 365(C).
    15. Nastaran Gholizadeh & Petr Musilek, 2024. "A Generalized Deep Reinforcement Learning Model for Distribution Network Reconfiguration with Power Flow-Based Action-Space Sampling," Energies, MDPI, vol. 17(20), pages 1-18, October.
    16. Wu, Huayi & Xu, Zhao, 2024. "Multi-energy flow calculation in integrated energy system via topological graph attention convolutional network with transfer learning," Energy, Elsevier, vol. 303(C).
    17. Wenshuai Bai & Dian Wang & Zhongquan Miao & Xiaorong Sun & Jiabin Yu & Jiping Xu & Yuqing Pan, 2023. "The Design and Application of Microgrid Supervisory System for Commercial Buildings Considering Dynamic Converter Efficiency," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    18. Abdelfattah, Wael & Abdelhamid, Ahmed Sayed & Hasanien, Hany M. & Rashad, Basem Abd-Elhamed, 2024. "Smart vehicle-to-grid integration strategy for enhancing distribution system performance and electric vehicle profitability," Energy, Elsevier, vol. 302(C).
    19. Salari, Azam & Zeinali, Mahdi & Marzband, Mousa, 2024. "Model-free reinforcement learning-based energy management for plug-in electric vehicles in a cooperative multi-agent home microgrid with consideration of travel behavior," Energy, Elsevier, vol. 288(C).
    20. Boza, Pal & Evgeniou, Theodoros, 2021. "Artificial intelligence to support the integration of variable renewable energy sources to the power system," Applied Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:309:y:2024:i:c:s0360544224021248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.