Intelligent Integration of Renewable Energy Resources Review: Generation and Grid Level Opportunities and Challenges
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Kou, Peng & Liang, Deliang & Wang, Chen & Wu, Zihao & Gao, Lin, 2020. "Safe deep reinforcement learning-based constrained optimal control scheme for active distribution networks," Applied Energy, Elsevier, vol. 264(C).
- Yang, Zhichun & Yang, Fan & Min, Huaidong & Tian, Hao & Hu, Wei & Liu, Jian & Eghbalian, Nasrin, 2023. "Energy management programming to reduce distribution network operating costs in the presence of electric vehicles and renewable energy sources," Energy, Elsevier, vol. 263(PA).
- Grover-Silva, Etta & Heleno, Miguel & Mashayekh, Salman & Cardoso, Gonçalo & Girard, Robin & Kariniotakis, George, 2018. "A stochastic optimal power flow for scheduling flexible resources in microgrids operation," Applied Energy, Elsevier, vol. 229(C), pages 201-208.
- Qiu, Dawei & Wang, Yi & Sun, Mingyang & Strbac, Goran, 2022. "Multi-service provision for electric vehicles in power-transportation networks towards a low-carbon transition: A hierarchical and hybrid multi-agent reinforcement learning approach," Applied Energy, Elsevier, vol. 313(C).
- Oh, Seok Hwa & Yoon, Yong Tae & Kim, Seung Wan, 2020. "Online reconfiguration scheme of self-sufficient distribution network based on a reinforcement learning approach," Applied Energy, Elsevier, vol. 280(C).
- Zhang, Bin & Hu, Weihao & Ghias, Amer M.Y.M. & Xu, Xiao & Chen, Zhe, 2022. "Multi-agent deep reinforcement learning-based coordination control for grid-aware multi-buildings," Applied Energy, Elsevier, vol. 328(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Soonwoo Lee & Hui-Myoung Oh & Jung Min Pak, 2024. "Event-Triggered Transmission of Sensor Measurements Using Twin Hybrid Filters for Renewable Energy Resource Management Systems," Energies, MDPI, vol. 17(22), pages 1-18, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lyu, Zhilin & Ni, Xingyu & Bai, Xiaoqing & Wang, Chongyang & Liu, Bin, 2024. "CNN data-driven active distribution network: Integration research of topology reconstruction and optimal scheduling in multi-source uncertain environment," Energy, Elsevier, vol. 309(C).
- Lu, Yu & Xiang, Yue & Huang, Yuan & Yu, Bin & Weng, Liguo & Liu, Junyong, 2023. "Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load," Energy, Elsevier, vol. 271(C).
- Oh, Seok Hwa & Yoon, Yong Tae & Kim, Seung Wan, 2020. "Online reconfiguration scheme of self-sufficient distribution network based on a reinforcement learning approach," Applied Energy, Elsevier, vol. 280(C).
- Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
- Hossein Lotfi & Mohammad Ebrahim Hajiabadi & Hossein Parsadust, 2024. "Power Distribution Network Reconfiguration Techniques: A Thorough Review," Sustainability, MDPI, vol. 16(23), pages 1-33, November.
- Zhao, Yincheng & Zhang, Guozhou & Hu, Weihao & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2023. "Meta-learning based voltage control strategy for emergency faults of active distribution networks," Applied Energy, Elsevier, vol. 349(C).
- Mohammad Javad Bordbari & Fuzhan Nasiri, 2024. "Networked Microgrids: A Review on Configuration, Operation, and Control Strategies," Energies, MDPI, vol. 17(3), pages 1-28, February.
- Li, J.Y. & Chen, J.J. & Wang, Y.X. & Chen, W.G., 2024. "Combining multi-step reconfiguration with many-objective reduction as iterative bi-level scheduling for stochastic distribution network," Energy, Elsevier, vol. 290(C).
- Lingling Hu & Junming Zhou & Feng Jiang & Guangming Xie & Jie Hu & Qinglie Mo, 2023. "Research on Optimization of Valley-Filling Charging for Vehicle Network System Based on Multi-Objective Optimization," Sustainability, MDPI, vol. 16(1), pages 1-25, December.
- Zhu, Ziqing & Hu, Ze & Chan, Ka Wing & Bu, Siqi & Zhou, Bin & Xia, Shiwei, 2023. "Reinforcement learning in deregulated energy market: A comprehensive review," Applied Energy, Elsevier, vol. 329(C).
- Zhang, Yiwen & Lin, Rui & Mei, Zhen & Lyu, Minghao & Jiang, Huaiguang & Xue, Ying & Zhang, Jun & Gao, David Wenzhong, 2024. "Interior-point policy optimization based multi-agent deep reinforcement learning method for secure home energy management under various uncertainties," Applied Energy, Elsevier, vol. 376(PA).
- He, Wangli & Li, Chengyuan & Cai, Chenhao & Qing, Xiangyun & Du, Wenli, 2024. "Suppressing active power fluctuations at PCC in grid-connection microgrids via multiple BESSs: A collaborative multi-agent reinforcement learning approach," Applied Energy, Elsevier, vol. 373(C).
- Jude Suchithra & Amin Rajabi & Duane A. Robinson, 2024. "Enhancing PV Hosting Capacity of Electricity Distribution Networks Using Deep Reinforcement Learning-Based Coordinated Voltage Control," Energies, MDPI, vol. 17(20), pages 1-27, October.
- Li, Yang & Yang, Zhen & Li, Guoqing & Mu, Yunfei & Zhao, Dongbo & Chen, Chen & Shen, Bo, 2018. "Optimal scheduling of isolated microgrid with an electric vehicle battery swapping station in multi-stakeholder scenarios: A bi-level programming approach via real-time pricing," Applied Energy, Elsevier, vol. 232(C), pages 54-68.
- Zhu, Dafeng & Yang, Bo & Liu, Yuxiang & Wang, Zhaojian & Ma, Kai & Guan, Xinping, 2022. "Energy management based on multi-agent deep reinforcement learning for a multi-energy industrial park," Applied Energy, Elsevier, vol. 311(C).
- Cao, Di & Zhao, Junbo & Hu, Weihao & Ding, Fei & Yu, Nanpeng & Huang, Qi & Chen, Zhe, 2022. "Model-free voltage control of active distribution system with PVs using surrogate model-based deep reinforcement learning," Applied Energy, Elsevier, vol. 306(PA).
- Se-Heon Lim & Sung-Guk Yoon, 2022. "Dynamic DNR and Solar PV Smart Inverter Control Scheme Using Heterogeneous Multi-Agent Deep Reinforcement Learning," Energies, MDPI, vol. 15(23), pages 1-18, December.
- Ibrahim Salem Jahan & Vojtech Blazek & Stanislav Misak & Vaclav Snasel & Lukas Prokop, 2022. "Forecasting of Power Quality Parameters Based on Meteorological Data in Small-Scale Household Off-Grid Systems," Energies, MDPI, vol. 15(14), pages 1-20, July.
- Phani Raghav, L. & Seshu Kumar, R. & Koteswara Raju, D. & Singh, Arvind R., 2022. "Analytic Hierarchy Process (AHP) – Swarm intelligence based flexible demand response management of grid-connected microgrid," Applied Energy, Elsevier, vol. 306(PB).
- Zhang, Zhengfa & da Silva, Filipe Faria & Guo, Yifei & Bak, Claus Leth & Chen, Zhe, 2021. "Double-layer stochastic model predictive voltage control in active distribution networks with high penetration of renewables," Applied Energy, Elsevier, vol. 302(C).
More about this item
Keywords
renewable integration; advanced solutions; thermal margin; fibre optic sensor; power flow; optimisation; machine learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4399-:d:1469933. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.