IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v308y2024ics0360544224026483.html
   My bibliography  Save this article

Optimal capacity configuration and operation strategy of typical industry load with energy storage in fast frequency regulation

Author

Listed:
  • Guo, Litao
  • Li, Weidong
  • Zhang, Mingze

Abstract

As the potential and competent load-side resources for frequency response and control in modern power grids, typical industrial load can compensate for the deficiency of frequency response capability for new-type power systems. However, the operational flexibility is seriously enforced by the operation conditions uncertainties of industrial load. With “Online Calculation, and Real-time Matching” as the core, based on fuzzy mathematical theory, the coordinated operation strategy of typical industrial loads and energy storage systems (ESS) is proposed to finish fast frequency regulation (FFR) tasks. And an optimal capacity configuration model of industrial loads with ESSs is established to evaluate the whole economic profitability in FFR. Specially, in terms of algorithms, a novel Two-layer Parallel Particle Swarm Optimization and Genetic Algorithm (TPPSGA) is innovatively designed in this manuscript. Comparing with traditional heuristic algorithms, TPPSOGA improves computation speed by 6.84 times. Simulation results show that our proposed strategy can reasonably estimate the frequency capability of industrial load by membership degree function, and prove that the industrial load participating in FFR with the support of ESSs is able to get more revenue and stability than industrial load or ESSs separately is in regulation of FFR. The economic analyze in market price and ESS parameters can help the load agent to screen the suitable-type ESS and its capacity to serve for FFR and enhance the flexibility in load-side frequency regulation.

Suggested Citation

  • Guo, Litao & Li, Weidong & Zhang, Mingze, 2024. "Optimal capacity configuration and operation strategy of typical industry load with energy storage in fast frequency regulation," Energy, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224026483
    DOI: 10.1016/j.energy.2024.132874
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224026483
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132874?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Zifeng & Guo, Litao & Yu, Samson S. & Zhang, Mingli & Ren, Yupeng & Zhang, Na & Li, Weidong, 2023. "An efficient full-response analytical model for probabilistic production simulation in fast frequency response reserve planning," Energy, Elsevier, vol. 273(C).
    2. Zhang, Mingze & Li, Weidong & Yu, Samson Shenglong & Wen, Kerui & Muyeen, S.M., 2023. "Day-ahead optimization dispatch strategy for large-scale battery energy storage considering multiple regulation and prediction failures," Energy, Elsevier, vol. 270(C).
    3. Zhang, Mingze & Li, Weidong & Yu, Samson Shenglong & Wen, Kerui & Zhou, Chen & Shi, Peng, 2021. "A unified configurational optimization framework for battery swapping and charging stations considering electric vehicle uncertainty," Energy, Elsevier, vol. 218(C).
    4. Cheng, Meng & Wu, Jianzhong & Galsworthy, Stephen J. & Gargov, Nikola & Hung, William H. & Zhou, Yue, 2017. "Performance of industrial melting pots in the provision of dynamic frequency response in the Great Britain power system," Applied Energy, Elsevier, vol. 201(C), pages 245-256.
    5. Bao, Yi & Xu, Jian & Feng, Wei & Sun, Yuanzhang & Liao, Siyang & Yin, Rongxin & Jiang, Yazhou & Jin, Ming & Marnay, Chris, 2019. "Provision of secondary frequency regulation by coordinated dispatch of industrial loads and thermal power plants," Applied Energy, Elsevier, vol. 241(C), pages 302-312.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    2. Li, Shuangqi & Zhao, Pengfei & Gu, Chenghong & Huo, Da & Zeng, Xianwu & Pei, Xiaoze & Cheng, Shuang & Li, Jianwei, 2022. "Online battery-protective vehicle to grid behavior management," Energy, Elsevier, vol. 243(C).
    3. Xin Ding & Sujie Zhang, 2024. "A Coordinated Emergency Frequency Control Strategy Based on Output Regulation Approach for an Isolated Industrial Microgrid," Energies, MDPI, vol. 17(20), pages 1-20, October.
    4. Najafi, Arsalan & Jasiński, Michał & Leonowicz, Zbigniew, 2022. "A hybrid distributed framework for optimal coordination of electric vehicle aggregators problem," Energy, Elsevier, vol. 249(C).
    5. Muhssin, Mazin T. & Cipcigan, Liana M. & Sami, Saif Sabah & Obaid, Zeyad Assi, 2018. "Potential of demand side response aggregation for the stabilization of the grids frequency," Applied Energy, Elsevier, vol. 220(C), pages 643-656.
    6. Azra Ghobadi & Mohammad Fallah & Reza Tavakkoli-Moghaddam & Hamed Kazemipoor, 2022. "A Fuzzy Two-Echelon Model to Optimize Energy Consumption in an Urban Logistics Network with Electric Vehicles," Sustainability, MDPI, vol. 14(21), pages 1-31, October.
    7. Lu, Renzhi & Bai, Ruichang & Ding, Yuemin & Wei, Min & Jiang, Junhui & Sun, Mingyang & Xiao, Feng & Zhang, Hai-Tao, 2021. "A hybrid deep learning-based online energy management scheme for industrial microgrid," Applied Energy, Elsevier, vol. 304(C).
    8. Tang, Yi & Li, Feng & Chen, Qian & Li, Mengya & Wang, Qi & Ni, Ming & Chen, Gang, 2018. "Frequency prediction method considering demand response aggregate characteristics and control effects," Applied Energy, Elsevier, vol. 229(C), pages 936-944.
    9. Hu, Xu & Yang, Zhaojun & Sun, Jun & Zhang, Yali, 2024. "When should capital-constrained swap service providers partner with battery lessors?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 190(C).
    10. Zhu, Feiqin & Li, Yalun & Lu, Languang & Wang, Hewu & Li, Liguo & Li, Kexin & Ouyang, Minggao, 2023. "Life cycle optimization framework of charging–swapping integrated energy supply systems for multi-type vehicles," Applied Energy, Elsevier, vol. 351(C).
    11. Forero-Quintero, Jose-Fernando & Villafáfila-Robles, Roberto & Barja-Martinez, Sara & Munné-Collado, Ingrid & Olivella-Rosell, Pol & Montesinos-Miracle, Daniel, 2022. "Profitability analysis on demand-side flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    12. Ye, Lin & Jin, Yifei & Wang, Kaifeng & Chen, Wei & Wang, Fei & Dai, Binhua, 2023. "A multi-area intra-day dispatch strategy for power systems under high share of renewable energy with power support capacity assessment," Applied Energy, Elsevier, vol. 351(C).
    13. Wang, Shubin & Li, Jiabao & Liu, Xinni & Zhao, Erlong & Eghbalian, Nasrin, 2022. "Multi-level charging stations for electric vehicles by considering ancillary generating and storage units," Energy, Elsevier, vol. 247(C).
    14. Li, Zifeng & Guo, Litao & Yu, Samson S. & Zhang, Mingli & Ren, Yupeng & Zhang, Na & Li, Weidong, 2023. "An efficient full-response analytical model for probabilistic production simulation in fast frequency response reserve planning," Energy, Elsevier, vol. 273(C).
    15. Lu, Nianci & Pan, Lei & Pedersen, Simon & Arabkoohsar, Ahmad, 2023. "A two-dimensional design and synthesis method for coordinated control of flexible-operational combined cycle of gas turbine," Energy, Elsevier, vol. 284(C).
    16. Zhang, Mingze & Li, Weidong & Yu, Samson Shenglong & Wang, Haixia & Ba, Yu, 2024. "Optimal day-ahead large-scale battery dispatch model for multi-regulation participation considering full timescale uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    17. Badesa, L. & Teng, F. & Strbac, G., 2020. "Pricing inertia and Frequency Response with diverse dynamics in a Mixed-Integer Second-Order Cone Programming formulation," Applied Energy, Elsevier, vol. 260(C).
    18. Xuan, Ivan Ying & Skourup, Charlotte & Jensen, Jørgen B. & Haugen, Trond & Thornhill, Nina F., 2022. "Flexible operation of a mixed fluid cascade LNG plant for electrical power management," Energy, Elsevier, vol. 250(C).
    19. Sebastian, Oliva H. & Carlos, Bahamonde D., 2024. "Trade-off between frequency stability and renewable generation – Studying virtual inertia from solar PV and operating stability constraints," Renewable Energy, Elsevier, vol. 232(C).
    20. Ibrahim M. Saleh & Andrey Postnikov & Corneliu Arsene & Argyrios C. Zolotas & Chris Bingham & Ronald Bickerton & Simon Pearson, 2018. "Impact of Demand Side Response on a Commercial Retail Refrigeration System," Energies, MDPI, vol. 11(2), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224026483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.