IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v211y2020ics0360544220319216.html
   My bibliography  Save this article

Trends on current and forecasted aircraft hybrid electric architectures and their impact on environment

Author

Listed:
  • Zaporozhets, Oleksandr
  • Isaienko, Volodymyr
  • Synylo, Kateryna

Abstract

Climate change is the megatrend that will have the biggest impact on the development of sustainable air transportation in near future. Aviation is expected to triple its proportional share of a Paris compatible 1.5 °C budget, declared by UNFCCC Agreement for global temperature through 2050 under current international policies. Basket of measures proposed by ICAO to keep the temperature change under this limit, including aircraft technology (up to 25%) and operation improvement (up to 9%) for fuel burn reduction by engines and new revolutionary architectures of the aircraft, deployment of sustainable alternative fuels (over 40% of fuel burn reduction), market based measures (ICAO CORSIA) as pushing system for more quick and efficient implementation of the first three, etc. Pioneering sustainable technology is allowing the civil aviation sector to embrace the next generation of aviation through electrification and alternative fuel sources. Electric propulsion is proposed as one of the revolutionary technology changes in aviation, which should be assessed on possible contribution in reaching the climate change goal and one of the environmental goals of the EU strategic document Flightpath 2050. Existing potential and forecasted progress for More Electric Aircraft concept is showing quite limited reduction in fuel burn and emission. Full electric or hybrid propulsion may provide essential reduction, but in considered time frame it is looking to be very possible for implementation in groups of General Aviation, Urban Air Taxis and Regional Aircraft first of all. More than 90% of GHG emissions from global commercial aircraft operations are generated by Large Commercial Aircraft, so research to reduce commercial aircraft emissions will be most useful if it focuses on technology applicable to them.

Suggested Citation

  • Zaporozhets, Oleksandr & Isaienko, Volodymyr & Synylo, Kateryna, 2020. "Trends on current and forecasted aircraft hybrid electric architectures and their impact on environment," Energy, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220319216
    DOI: 10.1016/j.energy.2020.118814
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220319216
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118814?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baharozu, Eren & Soykan, Gurkan & Ozerdem, M. Baris, 2017. "Future aircraft concept in terms of energy efficiency and environmental factors," Energy, Elsevier, vol. 140(P2), pages 1368-1377.
    2. Yilmaz, Nadir & Atmanli, Alpaslan, 2017. "Sustainable alternative fuels in aviation," Energy, Elsevier, vol. 140(P2), pages 1378-1386.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinning Zhang & Ioannis Roumeliotis & Argyrios Zolotas, 2022. "Sustainable Aviation Electrification: A Comprehensive Review of Electric Propulsion System Architectures, Energy Management, and Control," Sustainability, MDPI, vol. 14(10), pages 1-30, May.
    2. Aygun, Hakan & Turan, Onder, 2023. "Analysis of cruise conditions on energy, exergy and NOx emission parameters of a turbofan engine for middle-range aircraft," Energy, Elsevier, vol. 267(C).
    3. Kirmizi, Mehmet & Aygun, Hakan & Turan, Onder, 2024. "Energetic and exergetic metrics of a cargo aircraft turboprop propulsion system by using regression method for dynamic flight," Energy, Elsevier, vol. 296(C).
    4. Wang, Tao & Zhang, Yu & Yin, Zhao & Qiu, Liang & Hua, Yang & Zhang, Xian-wen & Qian, Ye-jian, 2023. "Decoupling control scheme optimization and energy analysis for a triaxial gas turbine based on the variable power offtakes/inputs," Energy, Elsevier, vol. 262(PB).
    5. Aygun, Hakan & Kirmizi, Mehmet & Kilic, Ulas & Turan, Onder, 2023. "Multi-objective optimization of a small turbojet engine energetic performance," Energy, Elsevier, vol. 271(C).
    6. Cihangir, Serhan Ahmet & Aygun, Hakan & Turan, Onder, 2022. "Energy and performance analysis of a turbofan engine with the aid of dynamic component efficiencies," Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atilgan, Ramazan & Onder Turan,, 2020. "Economy and exergy of aircraft turboprop engine at dynamic loads," Energy, Elsevier, vol. 213(C).
    2. Qiu, Rui & Hou, Shuhua & Meng, Zhiyi, 2021. "Low carbon air transport development trends and policy implications based on a scientometrics-based data analysis system," Transport Policy, Elsevier, vol. 107(C), pages 1-10.
    3. Ranasinghe, Kavindu & Guan, Kai & Gardi, Alessandro & Sabatini, Roberto, 2019. "Review of advanced low-emission technologies for sustainable aviation," Energy, Elsevier, vol. 188(C).
    4. Dahal, Karna & Brynolf, Selma & Xisto, Carlos & Hansson, Julia & Grahn, Maria & Grönstedt, Tomas & Lehtveer, Mariliis, 2021. "Techno-economic review of alternative fuels and propulsion systems for the aviation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Aygun, Hakan & Turan, Onder, 2021. "Exergo-economic analysis of off-design a target drone engine for reconnaissance mission flight," Energy, Elsevier, vol. 224(C).
    6. Siddiqui, O. & Dincer, I., 2021. "A comparative life cycle assessment of clean aviation fuels," Energy, Elsevier, vol. 234(C).
    7. Özbek, Emre & Yalin, Gorkem & Ekici, Selcuk & Karakoc, T. Hikmet, 2020. "Evaluation of design methodology, limitations, and iterations of a hydrogen fuelled hybrid fuel cell mini UAV," Energy, Elsevier, vol. 213(C).
    8. Wang, Bin & Wang, Chaohui & Wang, Zhiyu & Ni, Siliang & Yang, Yixin & Tian, Pengyu, 2023. "Adaptive state of energy evaluation for supercapacitor in emergency power system of more-electric aircraft," Energy, Elsevier, vol. 263(PA).
    9. Martin, Jonas & Neumann, Anne & Ødegård, Anders, 2023. "Renewable hydrogen and synthetic fuels versus fossil fuels for trucking, shipping and aviation: A holistic cost model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    10. Małgorzata Pawlak, 2021. "Effect of Energy Consumption Reduction on the Decrease of CO 2 Emissions during the Aircraft’s Flight," Energies, MDPI, vol. 14(9), pages 1-15, May.
    11. Andreas Goldmann & Waldemar Sauter & Marcel Oettinger & Tim Kluge & Uwe Schröder & Joerg R. Seume & Jens Friedrichs & Friedrich Dinkelacker, 2018. "A Study on Electrofuels in Aviation," Energies, MDPI, vol. 11(2), pages 1-23, February.
    12. Kim, Keunsoo & Lee, Wooyoung & Wiersema, Paxton & Mayhew, Eric & Temme, Jacob & Kweon, Chol-Bum M. & Lee, Tonghun, 2023. "Effects of the cetane number on chemical ignition delay," Energy, Elsevier, vol. 264(C).
    13. Escalante, Edwin Santiago Rios & Ramos, Luth Silva & Rodriguez Coronado, Christian J. & de Carvalho Júnior, João Andrade, 2022. "Evaluation of the potential feedstock for biojet fuel production: Focus in the Brazilian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    14. Luo, Qiaodan & Zhao, Shengfeng & Zhou, Shiji & Yao, Lipan & Yang, Chengwu & Lu, Xingen & Zhu, Junqiang, 2024. "Influence of diversified dihedral stator on the thermodynamic performance and flow loss characteristics of a variable core driven fan stage," Energy, Elsevier, vol. 294(C).
    15. Hyunjung Kim & Jiyoon Son, 2021. "Analyzing the Environmental Efficiency of Global Airlines by Continent for Sustainability," Sustainability, MDPI, vol. 13(3), pages 1-16, February.
    16. O’Connell, Adrian & Kousoulidou, Marina & Lonza, Laura & Weindorf, Werner, 2019. "Considerations on GHG emissions and energy balances of promising aviation biofuel pathways," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 504-515.
    17. Chen, Shuiwang & Wu, Lingxiao & Ng, Kam K.H. & Liu, Wei & Wang, Kun, 2024. "How airports enhance the environmental sustainability of operations: A critical review from the perspective of Operations Research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    18. Valeriy V. Iosifov & Pavel D. Ratner, 2021. "Climate Policies of G20 and New Threats for Russian Energy and Transportation Complex," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 478-486.
    19. Emami Javanmard, Majid & Tang, Yili & Martínez-Hernández, J. Adrián, 2024. "Forecasting air transportation demand and its impacts on energy consumption and emission," Applied Energy, Elsevier, vol. 364(C).
    20. Jagroop Singh & Somesh Kumar Sharma & Rajnish Srivastava, 2019. "AHP-Entropy based priority assessment of factors to reduce aviation fuel consumption," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(2), pages 212-227, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220319216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.