Numerical modeling and performance analysis of an open sorption energy storage system based on zeolite/water in building heating
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2024.132430
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kuznik, Frédéric & Gondre, Damien & Johannes, Kévyn & Obrecht, Christian & David, Damien, 2019. "Numerical modelling and investigations on a full-scale zeolite 13X open heat storage for buildings," Renewable Energy, Elsevier, vol. 132(C), pages 761-772.
- Feng, Changling & E, Jiaqiang & Han, Wei & Deng, Yuanwang & Zhang, Bin & Zhao, Xiaohuan & Han, Dandan, 2021. "Key technology and application analysis of zeolite adsorption for energy storage and heat-mass transfer process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- André, Laurie & Abanades, Stéphane & Flamant, Gilles, 2016. "Screening of thermochemical systems based on solid-gas reversible reactions for high temperature solar thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 703-715.
- Ji, Wenjie & Zhang, Heng & Liu, Shuli & Wang, Zhihao & Deng, Shihan, 2022. "An experimental study on the binary hydrated salt composite zeolite for improving thermochemical energy storage performance," Renewable Energy, Elsevier, vol. 194(C), pages 1163-1173.
- Elham Abohamzeh & Georg Frey, 2022. "Numerical Investigation of the Adsorption Process of Zeolite/Water in a Thermochemical Reactor for Seasonal Heat Storage," Energies, MDPI, vol. 15(16), pages 1-15, August.
- Lu, Yupeng & Xuan, Yimin & Teng, Liang & Liu, Jingrui & Wang, Busheng, 2024. "A cascaded thermochemical energy storage system enabling performance enhancement of concentrated solar power plants," Energy, Elsevier, vol. 288(C).
- Han, Xiaojing & Liu, Shuli & Zeng, Cheng & Yang, Liu & Shukla, Ashish & Shen, Yongliang, 2020. "Investigating the performance enhancement of copper fins on trapezoidal thermochemical reactor," Renewable Energy, Elsevier, vol. 150(C), pages 1037-1046.
- Hamdi, Mohamed & El Salmawy, Hafez A. & Ragab, Reda, 2024. "Incorporating operational constraints into long-term energy planning: The case of the Egyptian power system under high share of renewables," Energy, Elsevier, vol. 300(C).
- Bott, Christoph & Dressel, Ingo & Bayer, Peter, 2019. "State-of-technology review of water-based closed seasonal thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
- Gao, Shichao & Wang, Shugang & Sun, Yi & Wang, Jihong & Hu, Peiyu & Shang, Jiaxu & Ma, Zhenjun & Liang, Yuntao, 2023. "Effect of charging operating conditions on open zeolite/water vapor sorption thermal energy storage system," Renewable Energy, Elsevier, vol. 215(C).
- Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2021. "Numerical analysis on the improved thermo-chemical behaviour of hierarchical energy materials as a cascaded thermal accumulator," Energy, Elsevier, vol. 232(C).
- Kuznik, Frédéric & Gondre, Damien & Johannes, Kévyn & Obrecht, Christian & David, Damien, 2020. "Sensitivity analysis of a zeolite energy storage model: Impact of parameters on heat storage density and discharge power density," Renewable Energy, Elsevier, vol. 149(C), pages 468-478.
- Johannes, Kévyn & Kuznik, Frédéric & Hubert, Jean-Luc & Durier, Francois & Obrecht, Christian, 2015. "Design and characterisation of a high powered energy dense zeolite thermal energy storage system for buildings," Applied Energy, Elsevier, vol. 159(C), pages 80-86.
- Zhao, Y.J. & Wang, R.Z. & Zhang, Y.N. & Yu, N., 2016. "Development of SrBr2 composite sorbents for a sorption thermal energy storage system to store low-temperature heat," Energy, Elsevier, vol. 115(P1), pages 129-139.
- Zhao, Yu & Chang, Zhiyuan & Zhao, Yuanyang & Yang, Qichao & Liu, Guangbin & Li, Liansheng, 2023. "Performance comparison of three supercritical CO2 solar thermal power systems with compressed fluid and molten salt energy storage," Energy, Elsevier, vol. 282(C).
- Meha, Drilon & Pfeifer, Antun & Duić, Neven & Lund, Henrik, 2020. "Increasing the integration of variable renewable energy in coal-based energy system using power to heat technologies: The case of Kosovo," Energy, Elsevier, vol. 212(C).
- Herrando, María & Pantaleo, Antonio M. & Wang, Kai & Markides, Christos N., 2019. "Solar combined cooling, heating and power systems based on hybrid PVT, PV or solar-thermal collectors for building applications," Renewable Energy, Elsevier, vol. 143(C), pages 637-647.
- Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2022. "Salt hydrate–based gas-solid thermochemical energy storage: Current progress, challenges, and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Yihan & Chen, Tingsen & Liu, Shuli & Ji, Wenjie & Shen, Yongliang & Wang, Zhihao & Li, Yongliang, 2024. "Performance optimization and evaluation of integrating thermochemical energy storage with low-temperature driven absorption heat pump for building heating: 4E analyses," Applied Energy, Elsevier, vol. 372(C).
- Gao, Shichao & Wang, Shugang & Sun, Yi & Wang, Jihong & Hu, Peiyu & Shang, Jiaxu & Ma, Zhenjun & Liang, Yuntao, 2023. "Effect of charging operating conditions on open zeolite/water vapor sorption thermal energy storage system," Renewable Energy, Elsevier, vol. 215(C).
- Liu, Xiao & Liu, Xin & Yang, Fangming & Wu, Yupeng, 2024. "Experimental investigation of low-temperature fluidised bed thermochemical energy storage with salt-mesoporous silica composite materials," Applied Energy, Elsevier, vol. 362(C).
- Kant, K. & Pitchumani, R., 2022. "Advances and opportunities in thermochemical heat storage systems for buildings applications," Applied Energy, Elsevier, vol. 321(C).
- Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2021. "Numerical analysis on the improved thermo-chemical behaviour of hierarchical energy materials as a cascaded thermal accumulator," Energy, Elsevier, vol. 232(C).
- Carla Delmarre & Marie-Anne Resmond & Frédéric Kuznik & Christian Obrecht & Bao Chen & Kévyn Johannes, 2021. "Artificial Neural Network Simulation of Energetic Performance for Sorption Thermal Energy Storage Reactors," Energies, MDPI, vol. 14(11), pages 1-12, June.
- Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2020. "Development and characteristics analysis of salt-hydrate based composite sorbent for low-grade thermochemical energy storage," Renewable Energy, Elsevier, vol. 157(C), pages 920-940.
- Gordeeva, L.G. & Aristov, Yu.I., 2019. "Adsorptive heat storage and amplification: New cycles and adsorbents," Energy, Elsevier, vol. 167(C), pages 440-453.
- Zhang, Heng & Liu, Shuli & Shukla, Ashish & Zou, Yuliang & Han, Xiaojing & Shen, Yongliang & Yang, Liu & Zhang, Pengwei & Kusakana, Kanzumba, 2022. "Thermal performance study of thermochemical reactor using net-packed method," Renewable Energy, Elsevier, vol. 182(C), pages 483-493.
- Zhang, Yannan & Yan, Taisen & Wang, Ruzhu, 2024. "A new strategy of dual-material reactors for stable thermal output of sorption thermal battery," Energy, Elsevier, vol. 293(C).
- Yihan Wang & Zicheng Zhang & Shuli Liu & Zhihao Wang & Yongliang Shen, 2023. "Development and Characteristics Analysis of Novel Hydrated Salt Composite Adsorbents for Thermochemical Energy Storage," Energies, MDPI, vol. 16(18), pages 1-21, September.
- Amirhossein Banaei & Amir Zanj, 2021. "A Review on the Challenges of Using Zeolite 13X as Heat Storage Systems for the Residential Sector," Energies, MDPI, vol. 14(23), pages 1-14, December.
- Mazur, Natalia & Blijlevens, Melian A.R. & Ruliaman, Rick & Fischer, Hartmut & Donkers, Pim & Meekes, Hugo & Vlieg, Elias & Adan, Olaf & Huinink, Henk, 2023. "Revisiting salt hydrate selection for domestic heat storage applications," Renewable Energy, Elsevier, vol. 218(C).
- Yang, Tianrun & Liu, Wen & Kramer, Gert Jan & Sun, Qie, 2021. "Seasonal thermal energy storage: A techno-economic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
- Li, Wei & Markides, Christos N. & Zeng, Min & Peng, Jian, 2024. "4E evaluations of salt hydrate-based solar thermochemical heat transformer system used for domestic hot water production," Energy, Elsevier, vol. 286(C).
- Kuznik, Frédéric & Johannes, Kevyn & Obrecht, Christian & David, Damien, 2018. "A review on recent developments in physisorption thermal energy storage for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 576-586.
- Wang, Chengcheng & Yang, Hui & Tong, Lige & Nie, Binjian & Zou, Boyang & Guo, Wei & Wang, Li & Ding, Yulong, 2023. "Numerical investigation of a shell-and-tube thermochemical reactor with thermal bridges: Structurale optimization and performance evaluation," Renewable Energy, Elsevier, vol. 206(C), pages 1212-1227.
- Chao, Jingwei & Xu, Jiaxing & Yan, Taisen & Wang, Pengfei & Huo, Xiangyan & Wang, Ruzhu & Li, Tingxian, 2022. "Enhanced thermal conductivity and adsorption rate of zeolite 13X adsorbent by compression-induced molding method for sorption thermal battery," Energy, Elsevier, vol. 240(C).
- Feng, Changling & E, Jiaqiang & Han, Wei & Deng, Yuanwang & Zhang, Bin & Zhao, Xiaohuan & Han, Dandan, 2021. "Key technology and application analysis of zeolite adsorption for energy storage and heat-mass transfer process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Li, Wei & Zhang, Lianjie & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2022. "Thermochemical energy conversion behaviour in the corrugated heat storage unit with porous metal support," Energy, Elsevier, vol. 259(C).
More about this item
Keywords
Sorption energy storage; Mathematical model; Solid-gas reactor; Heat and mass transfer; Parametric analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:306:y:2024:i:c:s0360544224022047. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.