Sensitivity analysis of a zeolite energy storage model: Impact of parameters on heat storage density and discharge power density
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2019.12.035
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kuznik, Frédéric & Gondre, Damien & Johannes, Kévyn & Obrecht, Christian & David, Damien, 2019. "Numerical modelling and investigations on a full-scale zeolite 13X open heat storage for buildings," Renewable Energy, Elsevier, vol. 132(C), pages 761-772.
- Belen Zalba & Belen Sanchez-valverde & Jose Marin, 2005. "An experimental study of thermal energy storage with phase change materials by design of experiments," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(4), pages 321-332.
- Henninger, Stefan K. & Ernst, Sebastian-Johannes & Gordeeva, Larisa & Bendix, Phillip & Fröhlich, Dominik & Grekova, Alexandra D. & Bonaccorsi, Lucio & Aristov, Yuri & Jaenchen, Jochen, 2017. "New materials for adsorption heat transformation and storage," Renewable Energy, Elsevier, vol. 110(C), pages 59-68.
- Kuznik, Frédéric & Johannes, Kevyn & Obrecht, Christian & David, Damien, 2018. "A review on recent developments in physisorption thermal energy storage for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 576-586.
- Bonanos, A.M. & Votyakov, E.V., 2016. "Sensitivity analysis for thermocline thermal storage tank design," Renewable Energy, Elsevier, vol. 99(C), pages 764-771.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Yihan & Yang, Liu & Liu, Shuli & Wang, Zhihao & Deng, Shihan & Li, Yongliang & Shen, Yongliang, 2024. "Numerical modeling and performance analysis of an open sorption energy storage system based on zeolite/water in building heating," Energy, Elsevier, vol. 306(C).
- Gao, Shichao & Wang, Shugang & Sun, Yi & Wang, Jihong & Hu, Peiyu & Shang, Jiaxu & Ma, Zhenjun & Liang, Yuntao, 2023. "Effect of charging operating conditions on open zeolite/water vapor sorption thermal energy storage system," Renewable Energy, Elsevier, vol. 215(C).
- Wang, Yihan & Chen, Tingsen & Liu, Shuli & Ji, Wenjie & Shen, Yongliang & Wang, Zhihao & Li, Yongliang, 2024. "Performance optimization and evaluation of integrating thermochemical energy storage with low-temperature driven absorption heat pump for building heating: 4E analyses," Applied Energy, Elsevier, vol. 372(C).
- Strong, Curtis & Carrier, Ye & Handan Tezel, F., 2022. "Experimental optimization of operating conditions for an open bulk-scale silica gel/water vapour adsorption energy storage system," Applied Energy, Elsevier, vol. 312(C).
- Carla Delmarre & Marie-Anne Resmond & Frédéric Kuznik & Christian Obrecht & Bao Chen & Kévyn Johannes, 2021. "Artificial Neural Network Simulation of Energetic Performance for Sorption Thermal Energy Storage Reactors," Energies, MDPI, vol. 14(11), pages 1-12, June.
- Zhang, Heng & Liu, Shuli & Shukla, Ashish & Zou, Yuliang & Han, Xiaojing & Shen, Yongliang & Yang, Liu & Zhang, Pengwei & Kusakana, Kanzumba, 2022. "Thermal performance study of thermochemical reactor using net-packed method," Renewable Energy, Elsevier, vol. 182(C), pages 483-493.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bennici, Simona & Polimann, Téo & Ondarts, Michel & Gonze, Evelyne & Vaulot, Cyril & Le Pierrès, Nolwenn, 2020. "Long-term impact of air pollutants on thermochemical heat storage materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
- N’Tsoukpoe, Kokouvi Edem & Kuznik, Frédéric, 2021. "A reality check on long-term thermochemical heat storage for household applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
- Bennici, Simona & Dutournié, Patrick & Cathalan, Jérémy & Zbair, Mohamed & Nguyen, Minh Hoang & Scuiller, Elliot & Vaulot, Cyril, 2022. "Heat storage: Hydration investigation of MgSO4/active carbon composites, from material development to domestic applications scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
- Hu, Nan & Li, Zi-Rui & Xu, Zhe-Wen & Fan, Li-Wu, 2022. "Rapid charging for latent heat thermal energy storage: A state-of-the-art review of close-contact melting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
- Ashouri, Mahyar & Chhokar, Callum & Bahrami, Majid, 2024. "A novel microgroove-based absorber for sorption heat transformation systems: Analytical modeling and experimental investigation," Energy, Elsevier, vol. 307(C).
- Gordeeva, L.G. & Aristov, Yu.I., 2019. "Adsorptive heat storage and amplification: New cycles and adsorbents," Energy, Elsevier, vol. 167(C), pages 440-453.
- Fumey, Benjamin & Weber, Robert & Baldini, Luca, 2023. "Heat transfer constraints and performance mapping of a closed liquid sorption heat storage process," Applied Energy, Elsevier, vol. 335(C).
- Girnik, I.S. & Grekova, A.D. & Li, T.X. & Wang, R.Z. & Dutta, P. & Srinivasa Murthy, S. & Aristov, Yu.I., 2020. "Composite “LiCl/MWCNT/PVA” for adsorption thermal battery: Dynamics of methanol sorption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
- Tzinnis, Efstratios & Baldini, Luca, 2021. "Combining sorption storage and electric heat pumps to foster integration of solar in buildings," Applied Energy, Elsevier, vol. 301(C).
- Gao, Shichao & Wang, Shugang & Sun, Yi & Wang, Jihong & Hu, Peiyu & Shang, Jiaxu & Ma, Zhenjun & Liang, Yuntao, 2023. "Effect of charging operating conditions on open zeolite/water vapor sorption thermal energy storage system," Renewable Energy, Elsevier, vol. 215(C).
- Gbenou, Tadagbe Roger Sylvanus & Fopah-Lele, Armand & Wang, Kejian, 2022. "Macroscopic and microscopic investigations of low-temperature thermochemical heat storage reactors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Murray, Robynne E. & Groulx, Dominic, 2014. "Experimental study of the phase change and energy characteristics inside a cylindrical latent heat energy storage system: Part 1 consecutive charging and discharging," Renewable Energy, Elsevier, vol. 62(C), pages 571-581.
- Albaik, Ibrahim & Al-Dadah, Raya & Mahmoud, Saad & Ismail, Mohamed A. & Almesfer, Mohammed K., 2022. "Coated, packed and combined wire finned tube adsorption cooling and desalination system using metal-organic framework: Numerical study," Energy, Elsevier, vol. 247(C).
- Dasar, Sangappa R. & Boche, Abhijeet M. & Yadav, Ajay K. & S., Anish, 2023. "Sorption–desorption characteristics of dried cow dung with PVP and clay as composite desiccants: Experimental and exergetic analysis," Renewable Energy, Elsevier, vol. 202(C), pages 394-404.
- Mohammad Shakerin & Vilde Eikeskog & Yantong Li & Trond Thorgeir Harsem & Natasa Nord & Haoran Li, 2022. "Investigation of Combined Heating and Cooling Systems with Short- and Long-Term Storages," Sustainability, MDPI, vol. 14(9), pages 1-22, May.
- Feng, Changling & E, Jiaqiang & Han, Wei & Deng, Yuanwang & Zhang, Bin & Zhao, Xiaohuan & Han, Dandan, 2021. "Key technology and application analysis of zeolite adsorption for energy storage and heat-mass transfer process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Pinheiro, Joana M. & Salústio, Sérgio & Rocha, João & Valente, Anabela A. & Silva, Carlos M., 2020. "Adsorption heat pumps for heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- Alireza Sadeghlu & Ferdinand P. Schmidt, 2024. "Simulation Study of Single-Adsorber Heat Pump Cycle with Heat Recovery Through Stratified Storage in Both Adsorber and Evaporator/Condenser Loops," Energies, MDPI, vol. 17(21), pages 1-25, November.
- María Gasque & Federico Ibáñez & Pablo González-Altozano, 2021. "Minimum Number of Experimental Data for the Thermal Characterization of a Hot Water Storage Tank," Energies, MDPI, vol. 14(16), pages 1-16, August.
- Mohamed Zbair & Simona Bennici, 2021. "Survey Summary on Salts Hydrates and Composites Used in Thermochemical Sorption Heat Storage: A Review," Energies, MDPI, vol. 14(11), pages 1-33, May.
More about this item
Keywords
Physisorption; Heat storage; Numerical modeling; Sensitivity analysis; Optimization; Control;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:149:y:2020:i:c:p:468-478. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.