Current status of biohydrogen production from lignocellulosic biomass, technical challenges and commercial potential through pyrolysis process
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.120433
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Bridgwater, A. V. & Toft, A. J. & Brammer, J. G., 2002. "A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(3), pages 181-246, September.
- Chen, Guan-Bang & Li, Yueh-Heng & Chen, Guan-Lin & Wu, Wen-Teng, 2017. "Effects of catalysts on pyrolysis of castor meal," Energy, Elsevier, vol. 119(C), pages 1-9.
- Al Arni, Saleh, 2018. "Comparison of slow and fast pyrolysis for converting biomass into fuel," Renewable Energy, Elsevier, vol. 124(C), pages 197-201.
- Huang, GuanHua & Chen, Feng & Wei, Dong & Zhang, XueWu & Chen, Gu, 2010. "Biodiesel production by microalgal biotechnology," Applied Energy, Elsevier, vol. 87(1), pages 38-46, January.
- Ioannidou, O. & Zabaniotou, A. & Antonakou, E.V. & Papazisi, K.M. & Lappas, A.A. & Athanassiou, C., 2009. "Investigating the potential for energy, fuel, materials and chemicals production from corn residues (cobs and stalks) by non-catalytic and catalytic pyrolysis in two reactor configurations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 750-762, May.
- Williams, Paul T. & Besler, Serpil, 1996. "The influence of temperature and heating rate on the slow pyrolysis of biomass," Renewable Energy, Elsevier, vol. 7(3), pages 233-250.
- Kongkasawan, Jinjuta & Nam, Hyungseok & Capareda, Sergio C., 2016. "Jatropha waste meal as an alternative energy source via pressurized pyrolysis: A study on temperature effects," Energy, Elsevier, vol. 113(C), pages 631-642.
- Chattopadhyay, Jayeeta & Pathak, T.S. & Srivastava, R. & Singh, A.C., 2016. "Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis," Energy, Elsevier, vol. 103(C), pages 513-521.
- Al-Rahbi, Amal S. & Williams, Paul T., 2017. "Hydrogen-rich syngas production and tar removal from biomass gasification using sacrificial tyre pyrolysis char," Applied Energy, Elsevier, vol. 190(C), pages 501-509.
- Li, Hongyu & Xu, Qingli & Xue, Hanshen & Yan, Yongjie, 2009. "Catalytic reforming of the aqueous phase derived from fast-pyrolysis of biomass," Renewable Energy, Elsevier, vol. 34(12), pages 2872-2877.
- Chen, Guanyi & Yao, Jingang & Liu, Jing & Yan, Beibei & Shan, Rui, 2016. "Biomass to hydrogen-rich syngas via catalytic steam reforming of bio-oil," Renewable Energy, Elsevier, vol. 91(C), pages 315-322.
- Papadis, Elisa & Tsatsaronis, George, 2020. "Challenges in the decarbonization of the energy sector," Energy, Elsevier, vol. 205(C).
- Kawale, Harshal D. & Kishore, Nanda, 2020. "Comparative study on pyrolysis of Delonix Regia, Pinewood sawdust and their co-feed for plausible bio-fuels production," Energy, Elsevier, vol. 203(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Al-Rumaihi, Aisha & Shahbaz, Muhammad & Mckay, Gordon & Mackey, Hamish & Al-Ansari, Tareq, 2022. "A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Douvartzides, Savvas & Charisiou, Nikolaos D. & Wang, Wen & Papadakis, Vagelis G. & Polychronopoulou, Kyriaki & Goula, Maria A., 2022. "Catalytic fast pyrolysis of agricultural residues and dedicated energy crops for the production of high energy density transportation biofuels. Part I: Chemical pathways and bio-oil upgrading," Renewable Energy, Elsevier, vol. 185(C), pages 483-505.
- Ren, Yi & Wang, Zhiyong & Chen, Jianbiao & Gao, Haojie & Guo, Kai & Wang, Xu & Wang, Xiaoyuan & Wang, Yinfeng & Chen, Haijun & Zhu, Jinjiao & Zhu, Yuezhao, 2023. "Effect of water/acetic acid washing pretreatment on biomass chemical looping gasification (BCLG) using cost-effective oxygen carrier from iron-rich sludge ash," Energy, Elsevier, vol. 272(C).
- Douvartzides, Savvas & Charisiou, Nikolaos D. & Wang, Wen & Papadakis, Vagelis G. & Polychronopoulou, Kyriaki & Goula, Maria A., 2022. "Catalytic fast pyrolysis of agricultural residues and dedicated energy crops for the production of high energy density transportation biofuels. Part II: Catalytic research," Renewable Energy, Elsevier, vol. 189(C), pages 315-338.
- Machineni, Lakshmi & Deepanraj, B. & Chew, Kit Wayne & Rao, A. Gangagni, 2023. "Biohydrogen production from lignocellulosic feedstock: Abiotic and biotic methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
- Ying, Zhi & Du, Yueyue & Gu, Xufei & Yu, Xiaosha & Zheng, Xiaoyuan & Dou, Binlin & Cui, Guomin, 2024. "Biochar-assisted water electrolysis for energy-saving hydrogen production: Evolution of corn straw-based biochar structure and its enhanced effect on Cr(VI) removal," Energy, Elsevier, vol. 305(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- José Juan Alvarado-Flores & Jorge Víctor Alcaraz-Vera & María Liliana Ávalos-Rodríguez & Erandini Guzmán-Mejía & José Guadalupe Rutiaga-Quiñones & Luís Fernando Pintor-Ibarra & Santiago José Guevara-M, 2024. "Thermochemical Production of Hydrogen from Biomass: Pyrolysis and Gasification," Energies, MDPI, vol. 17(2), pages 1-21, January.
- John Steven Devia-Orjuela & Christian E Alvarez-Pugliese & Dayana Donneys-Victoria & Nilson Marriaga Cabrales & Luz Edith Barba Ho & Balazs Brém & Anca Sauciuc & Emese Gál & Douglas Espin & Martin Sch, 2019. "Evaluation of Press Mud, Vinasse Powder and Extraction Sludge with Ethanol in a Pyrolysis Process," Energies, MDPI, vol. 12(21), pages 1-21, October.
- Hossain, A.K. & Davies, P.A., 2013. "Pyrolysis liquids and gases as alternative fuels in internal combustion engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 165-189.
- Patel, Madhumita & Zhang, Xiaolei & Kumar, Amit, 2016. "Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1486-1499.
- Usmani, Sameer & Gonzalez Quiroga, Arturo & Vasquez Padilla, Ricardo & Palmer, Graeme & Lake, Maree, 2020. "Simulation model of the characteristics of syngas from hardwood biomass for thermally integrated gasification using unisim design tool," Energy, Elsevier, vol. 211(C).
- Lund, Henrik & Skov, Iva Ridjan & Thellufsen, Jakob Zinck & Sorknæs, Peter & Korberg, Andrei David & Chang, Miguel & Mathiesen, Brian Vad & Kany, Mikkel Strunge, 2022. "The role of sustainable bioenergy in a fully decarbonised society," Renewable Energy, Elsevier, vol. 196(C), pages 195-203.
- Ong, Hwai Chyuan & Chen, Wei-Hsin & Farooq, Abid & Gan, Yong Yang & Lee, Keat Teong & Ashokkumar, Veeramuthu, 2019. "Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
- John J. Milledge & Benjamin Smith & Philip W. Dyer & Patricia Harvey, 2014. "Macroalgae-Derived Biofuel: A Review of Methods of Energy Extraction from Seaweed Biomass," Energies, MDPI, vol. 7(11), pages 1-29, November.
- Arsani Alina & Stefan George, 2024. "Energy Transition and European Sub-Models. Restructuring EU Economy," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 86-101.
- Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
- AlNouss, Ahmed & McKay, Gordon & Al-Ansari, Tareq, 2020. "Enhancing waste to hydrogen production through biomass feedstock blending: A techno-economic-environmental evaluation," Applied Energy, Elsevier, vol. 266(C).
- Behnam Tabatabai & Afua Adusei & Alok Kumar Shrivastava & Prashant Kumar Singh & Viji Sitther, 2020. "Nitrogen Deprivation in Fremyella diplosiphon Augments Lipid Production without Affecting Growth," Energies, MDPI, vol. 13(21), pages 1-12, November.
- Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
- Wenran Gao & Hui Li & Karnowo & Bing Song & Shu Zhang, 2020. "Integrated Leaching and Thermochemical Technologies for Producing High-Value Products from Rice Husk: Leaching of Rice Husk with the Aqueous Phases of Bioliquids," Energies, MDPI, vol. 13(22), pages 1-15, November.
- Wu, Hong & Li, Yuanyuan & Chen, Lei & Zong, Minhua, 2011. "Production of microbial oil with high oleic acid content by Trichosporon capitatum," Applied Energy, Elsevier, vol. 88(1), pages 138-142, January.
- Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
- Al-Jabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mehmoud Ibrahim & Hoekman, Kent & Hawari, Alaa H., 2022. "A comparison of bio-crude oil production from five marine microalgae – Using life cycle analysis," Energy, Elsevier, vol. 251(C).
- Łukasz Jarosław Kozar & Robert Matusiak & Marta Paduszyńska & Adam Sulich, 2022. "Green Jobs in the EU Renewable Energy Sector: Quantile Regression Approach," Energies, MDPI, vol. 15(18), pages 1-21, September.
- Jānis Krūmiņš & Māris Kļaviņš, 2023. "Investigating the Potential of Nuclear Energy in Achieving a Carbon-Free Energy Future," Energies, MDPI, vol. 16(9), pages 1-31, April.
- Ahmed, Gaffer & Kishore, Nanda, 2024. "Synergistic effects on properties of biofuel and biochar produced through co-feed pyrolysis of Erythrina indica and Azadirachta indica biomass," Renewable Energy, Elsevier, vol. 227(C).
More about this item
Keywords
Biohydrogen; Lignocellulosic biomass; Pyrolysis; Reforming; Technology readiness level;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:226:y:2021:i:c:s0360544221006824. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.