IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v305y2024ics0360544224020036.html
   My bibliography  Save this article

Study on hierarchical model of hydroelectric unit commitment based on similarity schedule and quadratic optimization approach

Author

Listed:
  • Huang, Jingwei
  • Qin, Hui
  • Shen, Keyan
  • Yang, Yuqi
  • Jia, Benjun

Abstract

The short-term hydro scheduling (STHS) is mainly concerned with the accuracy and efficiency. Hydraulic unit commitment (HUC), the most important part of STHS, requires significant computational resources. Hence, we introduced a similarity search algorithm based on unsupervised machine learning to initialize the schedules of the HUC problem to reduce the solving difficulty. This paper aimed to minimize water consumption during the dispatch period. First, the dynamic time regularization (DTW) algorithm was used to measure the similarity of the historical load data and screen out the reasonable unit commitment schedules to be combined with the stochastic solutions. Subsequently, a hierarchical model was constructed for quadratic optimization. In the outer layer, the dual-population particle swarm optimization based on similarity results optimized on and off status of the unit, while in the inner layer, the DP was used to distribute the load. Moreover, the elite search strategy narrowed population quality differences. The results show that: (1) the model can improve economic benefits and ensure unit stability; (2) historical commitment solutions learned by the similarity algorithm exhibit constraint violations can be mitigated through secondary optimization, further optimizes the solution space; (3) ML algorithm can enhance HUC performance, especially for large-scale problems.

Suggested Citation

  • Huang, Jingwei & Qin, Hui & Shen, Keyan & Yang, Yuqi & Jia, Benjun, 2024. "Study on hierarchical model of hydroelectric unit commitment based on similarity schedule and quadratic optimization approach," Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224020036
    DOI: 10.1016/j.energy.2024.132229
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224020036
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132229?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224020036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.