IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v305y2024ics0360544224020036.html
   My bibliography  Save this article

Study on hierarchical model of hydroelectric unit commitment based on similarity schedule and quadratic optimization approach

Author

Listed:
  • Huang, Jingwei
  • Qin, Hui
  • Shen, Keyan
  • Yang, Yuqi
  • Jia, Benjun

Abstract

The short-term hydro scheduling (STHS) is mainly concerned with the accuracy and efficiency. Hydraulic unit commitment (HUC), the most important part of STHS, requires significant computational resources. Hence, we introduced a similarity search algorithm based on unsupervised machine learning to initialize the schedules of the HUC problem to reduce the solving difficulty. This paper aimed to minimize water consumption during the dispatch period. First, the dynamic time regularization (DTW) algorithm was used to measure the similarity of the historical load data and screen out the reasonable unit commitment schedules to be combined with the stochastic solutions. Subsequently, a hierarchical model was constructed for quadratic optimization. In the outer layer, the dual-population particle swarm optimization based on similarity results optimized on and off status of the unit, while in the inner layer, the DP was used to distribute the load. Moreover, the elite search strategy narrowed population quality differences. The results show that: (1) the model can improve economic benefits and ensure unit stability; (2) historical commitment solutions learned by the similarity algorithm exhibit constraint violations can be mitigated through secondary optimization, further optimizes the solution space; (3) ML algorithm can enhance HUC performance, especially for large-scale problems.

Suggested Citation

  • Huang, Jingwei & Qin, Hui & Shen, Keyan & Yang, Yuqi & Jia, Benjun, 2024. "Study on hierarchical model of hydroelectric unit commitment based on similarity schedule and quadratic optimization approach," Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224020036
    DOI: 10.1016/j.energy.2024.132229
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224020036
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132229?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alireza Amani & Hosein Alizadeh, 2021. "Solving Hydropower Unit Commitment Problem Using a Novel Sequential Mixed Integer Linear Programming Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1711-1729, April.
    2. Marshall L. Fisher, 1981. "The Lagrangian Relaxation Method for Solving Integer Programming Problems," Management Science, INFORMS, vol. 27(1), pages 1-18, January.
    3. Gaudard, Ludovic & Avanzi, Francesco & De Michele, Carlo, 2018. "Seasonal aspects of the energy-water nexus: The case of a run-of-the-river hydropower plant," Applied Energy, Elsevier, vol. 210(C), pages 604-612.
    4. Jingwei Huang & Hui Qin & Yongchuan Zhang & Dongkai Hou & Sipeng Zhu & Pingan Ren, 2023. "Short-term Prediction Method of Reservoir Downstream Water Level Under Complicated Hydraulic Influence," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(11), pages 4475-4490, September.
    5. Zhang, Jingrui & Tang, Qinghui & Chen, Yalin & Lin, Shuang, 2016. "A hybrid particle swarm optimization with small population size to solve the optimal short-term hydro-thermal unit commitment problem," Energy, Elsevier, vol. 109(C), pages 765-780.
    6. Cheng, Qian & Ming, Bo & Liu, Pan & Huang, Kangdi & Gong, Yu & Li, Xiao & Zheng, Yalian, 2021. "Solving hydro unit commitment problems with multiple hydraulic heads based on a two-layer nested optimization method," Renewable Energy, Elsevier, vol. 172(C), pages 317-326.
    7. Diaa Salman & Mehmet Kusaf, 2021. "Short-Term Unit Commitment by Using Machine Learning to Cover the Uncertainty of Wind Power Forecasting," Sustainability, MDPI, vol. 13(24), pages 1-22, December.
    8. Wang, Peilin & Yuan, Wenlin & Su, Chengguo & Wu, Yang & Lu, Lu & Yan, Denghua & Wu, Zening, 2022. "Short-term optimal scheduling of cascade hydropower plants shaving peak load for multiple power grids," Renewable Energy, Elsevier, vol. 184(C), pages 68-79.
    9. Nazari-Heris, Morteza & Babaei, Amir Fakhim & Mohammadi-Ivatloo, Behnam & Asadi, Somayeh, 2018. "Improved harmony search algorithm for the solution of non-linear non-convex short-term hydrothermal scheduling," Energy, Elsevier, vol. 151(C), pages 226-237.
    10. Luis Montero & Antonio Bello & Javier Reneses, 2022. "A Review on the Unit Commitment Problem: Approaches, Techniques, and Resolution Methods," Energies, MDPI, vol. 15(4), pages 1-40, February.
    11. Kang, Dongju & Kang, Doeun & Hwangbo, Sumin & Niaz, Haider & Lee, Won Bo & Liu, J. Jay & Na, Jonggeol, 2023. "Optimal planning of hybrid energy storage systems using curtailed renewable energy through deep reinforcement learning," Energy, Elsevier, vol. 284(C).
    12. Rong, Aiying & Hakonen, Henri & Lahdelma, Risto, 2008. "A variant of the dynamic programming algorithm for unit commitment of combined heat and power systems," European Journal of Operational Research, Elsevier, vol. 190(3), pages 741-755, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Razavi, Seyed-Ehsan & Esmaeel Nezhad, Ali & Mavalizadeh, Hani & Raeisi, Fatima & Ahmadi, Abdollah, 2018. "Robust hydrothermal unit commitment: A mixed-integer linear framework," Energy, Elsevier, vol. 165(PB), pages 593-602.
    2. Wang, Yanling & Wen, Xin & Su, Huaying & Qin, Jisen & Kong, Linghui, 2023. "Real-time dispatch of hydro-photovoltaic (PV) hybrid system based on dynamic load reserve capacity," Energy, Elsevier, vol. 285(C).
    3. Wolosewicz, Cathy & Dauzère-Pérès, Stéphane & Aggoune, Riad, 2015. "A Lagrangian heuristic for an integrated lot-sizing and fixed scheduling problem," European Journal of Operational Research, Elsevier, vol. 244(1), pages 3-12.
    4. M Diaby & A L Nsakanda, 2006. "Large-scale capacitated part-routing in the presence of process and routing flexibilities and setup costs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(9), pages 1100-1112, September.
    5. Ogbe, Emmanuel & Li, Xiang, 2017. "A new cross decomposition method for stochastic mixed-integer linear programming," European Journal of Operational Research, Elsevier, vol. 256(2), pages 487-499.
    6. Mutsunori Yagiura & Toshihide Ibaraki & Fred Glover, 2004. "An Ejection Chain Approach for the Generalized Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 16(2), pages 133-151, May.
    7. Rong, Aiying & Lahdelma, Risto, 2017. "An efficient model and algorithm for the transmission-constrained multi-site combined heat and power system," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1106-1117.
    8. S Bilgin & M Azizoǧlu, 2006. "Capacity and tool allocation problem in flexible manufacturing systems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(6), pages 670-681, June.
    9. Weijun Xie & Yanfeng Ouyang & Sze Chun Wong, 2016. "Reliable Location-Routing Design Under Probabilistic Facility Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 1128-1138, August.
    10. Peter Francis & Karen Smilowitz & Michal Tzur, 2006. "The Period Vehicle Routing Problem with Service Choice," Transportation Science, INFORMS, vol. 40(4), pages 439-454, November.
    11. Park, Moon-Won & Kim, Yeong-Dae, 2000. "A branch and bound algorithm for a production scheduling problem in an assembly system under due date constraints," European Journal of Operational Research, Elsevier, vol. 123(3), pages 504-518, June.
    12. Shangyao Yan & Chun-Ying Chen & Chuan-Che Wu, 2012. "Solution methods for the taxi pooling problem," Transportation, Springer, vol. 39(3), pages 723-748, May.
    13. Jenny Carolina Saldana Cortés, 2011. "Programación semidefinida aplicada a problemas de cantidad económica de pedido," Documentos CEDE 8735, Universidad de los Andes, Facultad de Economía, CEDE.
    14. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    15. Wu, Yuqiang & Liao, Shengli & Liu, Benxi & Cheng, Chuntian & Zhao, Hongye & Fang, Zhou & Lu, Jia, 2024. "Short-term load distribution model for cascade giant hydropower stations with complex hydraulic and electrical connections," Renewable Energy, Elsevier, vol. 232(C).
    16. Keliang Wang & Leonardo Lozano & Carlos Cardonha & David Bergman, 2023. "Optimizing over an Ensemble of Trained Neural Networks," INFORMS Journal on Computing, INFORMS, vol. 35(3), pages 652-674, May.
    17. Ibrahim Muter & Tevfik Aytekin, 2017. "Incorporating Aggregate Diversity in Recommender Systems Using Scalable Optimization Approaches," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 405-421, August.
    18. Dongwang Zhang & Tuo Zhou & Zhihong Liu & Hairui Yang & Rushan Bie & Man Zhang, 2024. "Matching Analysis of Technical Parameters and Safety Standards for Nuclear Replacement of Coal-Fired Units," Energies, MDPI, vol. 17(22), pages 1-15, November.
    19. Zhang, Yongxiang & Peng, Qiyuan & Yao, Yu & Zhang, Xin & Zhou, Xuesong, 2019. "Solving cyclic train timetabling problem through model reformulation: Extended time-space network construct and Alternating Direction Method of Multipliers methods," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 344-379.
    20. Raymond K. Cheung & Chung-Lun Li & Wuqin Lin, 2002. "Interblock Crane Deployment in Container Terminals," Transportation Science, INFORMS, vol. 36(1), pages 79-93, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224020036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.