IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v57y2006i9d10.1057_palgrave.jors.2602072.html
   My bibliography  Save this article

Large-scale capacitated part-routing in the presence of process and routing flexibilities and setup costs

Author

Listed:
  • M Diaby

    (University of Connecticut)

  • A L Nsakanda

    (Carleton University)

Abstract

We develop a Lagrangean relaxation-based heuristic procedure to generate a near-optimal solution to large-scale capacitated part-routing problems through a cellular manufacturing system with both routing flexibilities and setup times. Several alternate process plans exist for each product. Any given operation can be performed on alternate machines at different costs. The part demands can be satisfied from internal production or through outsourcing. The objective is to minimize the total material handling, production, outsourcing, and setup costs, subject to satisfying all the part demands and not exceeding any of the machine capacity limits. Our computational experiments show that large problems involving several thousand products and decision variables can be solved in a reasonable amount of computer time to within 1% of their optimal solutions. The proposed procedure is general enough to be applied directly or with slight modifications to real-life, industrial-sized problems.

Suggested Citation

  • M Diaby & A L Nsakanda, 2006. "Large-scale capacitated part-routing in the presence of process and routing flexibilities and setup costs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(9), pages 1100-1112, September.
  • Handle: RePEc:pal:jorsoc:v:57:y:2006:i:9:d:10.1057_palgrave.jors.2602072
    DOI: 10.1057/palgrave.jors.2602072
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2602072
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2602072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rajamani, Divakar & Singh, N. & Aneja, Y. P., 1992. "Selection of parts and machines for cellularization: A mathematical programming approach," European Journal of Operational Research, Elsevier, vol. 62(1), pages 47-54, October.
    2. Marshall L. Fisher, 1981. "The Lagrangian Relaxation Method for Solving Integer Programming Problems," Management Science, INFORMS, vol. 27(1), pages 1-18, January.
    3. Vishwanath Ramabhatta & Rakesh Nagi, 1998. "An integrated formulation of manufacturing cell formation with capacity planning and multiple routings," Annals of Operations Research, Springer, vol. 77(0), pages 79-95, January.
    4. Xiaolan Xie, 1993. "Manufacturing cell formation under capacity constraints," Applied Stochastic Models and Data Analysis, John Wiley & Sons, vol. 9(2), pages 87-96, June.
    5. Singh, N. & Aneja, Y. P. & Rana, S. P., 1992. "A bicriterion framework for operations assignment and routing flexibility analysis in Cellular Manufacturing Systems," European Journal of Operational Research, Elsevier, vol. 60(2), pages 200-210, July.
    6. Caux, C. & Bruniaux, R. & Pierreval, H., 2000. "Cell formation with alternative process plans and machine capacity constraints: A new combined approach," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 279-284, March.
    7. Moustapha Diaby & Harish C. Bahl & Mark H. Karwan & Stanley Zionts, 1992. "A Lagrangean Relaxation Approach for Very-Large-Scale Capacitated Lot-Sizing," Management Science, INFORMS, vol. 38(9), pages 1329-1340, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Papaioannou, Grammatoula & Wilson, John M., 2010. "The evolution of cell formation problem methodologies based on recent studies (1997-2008): Review and directions for future research," European Journal of Operational Research, Elsevier, vol. 206(3), pages 509-521, November.
    2. R Bhatnagar & V Saddikuti, 2010. "Models for cellular manufacturing systems design: matching processing requirements and operator capabilities," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(5), pages 827-839, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nsakanda, Aaron Luntala & Diaby, Moustapha & Price, Wilson L., 2006. "Hybrid genetic approach for solving large-scale capacitated cell formation problems with multiple routings," European Journal of Operational Research, Elsevier, vol. 171(3), pages 1051-1070, June.
    2. Samadi, Mohammadreza & Nikolaev, Alexander & Nagi, Rakesh, 2016. "A subjective evidence model for influence maximization in social networks," Omega, Elsevier, vol. 59(PB), pages 263-278.
    3. Diaby, Moustapha, 2000. "Integrated batch size and setup reduction decisions in multi-product, dynamic manufacturing environments," International Journal of Production Economics, Elsevier, vol. 67(3), pages 219-233, October.
    4. Gravel, Marc & Luntala Nsakanda, Aaron & Price, Wilson, 1998. "Efficient solutions to the cell-formation problem with multiple routings via a double-loop genetic algorithm," European Journal of Operational Research, Elsevier, vol. 109(2), pages 286-298, September.
    5. Kimms, Alf, 1996. "Improved lower bounds for the proportional lot sizing and scheduling problem," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 414, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    6. Jans, Raf & Degraeve, Zeger, 2007. "Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1855-1875, March.
    7. Wolosewicz, Cathy & Dauzère-Pérès, Stéphane & Aggoune, Riad, 2015. "A Lagrangian heuristic for an integrated lot-sizing and fixed scheduling problem," European Journal of Operational Research, Elsevier, vol. 244(1), pages 3-12.
    8. Ogbe, Emmanuel & Li, Xiang, 2017. "A new cross decomposition method for stochastic mixed-integer linear programming," European Journal of Operational Research, Elsevier, vol. 256(2), pages 487-499.
    9. Mutsunori Yagiura & Toshihide Ibaraki & Fred Glover, 2004. "An Ejection Chain Approach for the Generalized Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 16(2), pages 133-151, May.
    10. S Bilgin & M Azizoǧlu, 2006. "Capacity and tool allocation problem in flexible manufacturing systems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(6), pages 670-681, June.
    11. Weijun Xie & Yanfeng Ouyang & Sze Chun Wong, 2016. "Reliable Location-Routing Design Under Probabilistic Facility Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 1128-1138, August.
    12. Peter Francis & Karen Smilowitz & Michal Tzur, 2006. "The Period Vehicle Routing Problem with Service Choice," Transportation Science, INFORMS, vol. 40(4), pages 439-454, November.
    13. Park, Moon-Won & Kim, Yeong-Dae, 2000. "A branch and bound algorithm for a production scheduling problem in an assembly system under due date constraints," European Journal of Operational Research, Elsevier, vol. 123(3), pages 504-518, June.
    14. Shangyao Yan & Chun-Ying Chen & Chuan-Che Wu, 2012. "Solution methods for the taxi pooling problem," Transportation, Springer, vol. 39(3), pages 723-748, May.
    15. Jenny Carolina Saldana Cortés, 2011. "Programación semidefinida aplicada a problemas de cantidad económica de pedido," Documentos CEDE 8735, Universidad de los Andes, Facultad de Economía, CEDE.
    16. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    17. Keliang Wang & Leonardo Lozano & Carlos Cardonha & David Bergman, 2023. "Optimizing over an Ensemble of Trained Neural Networks," INFORMS Journal on Computing, INFORMS, vol. 35(3), pages 652-674, May.
    18. Ibrahim Muter & Tevfik Aytekin, 2017. "Incorporating Aggregate Diversity in Recommender Systems Using Scalable Optimization Approaches," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 405-421, August.
    19. Zhang, Yongxiang & Peng, Qiyuan & Yao, Yu & Zhang, Xin & Zhou, Xuesong, 2019. "Solving cyclic train timetabling problem through model reformulation: Extended time-space network construct and Alternating Direction Method of Multipliers methods," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 344-379.
    20. Raymond K. Cheung & Chung-Lun Li & Wuqin Lin, 2002. "Interblock Crane Deployment in Container Terminals," Transportation Science, INFORMS, vol. 36(1), pages 79-93, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:57:y:2006:i:9:d:10.1057_palgrave.jors.2602072. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.