Multi-objective optimization of water-alternating flue gas process using machine learning and nature-inspired algorithms in a real geological field
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2024.130413
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Vo Thanh, Hung & Sheini Dashtgoli, Danial & Zhang, Hemeng & Min, Baehyun, 2023. "Machine-learning-based prediction of oil recovery factor for experimental CO2-Foam chemical EOR: Implications for carbon utilization projects," Energy, Elsevier, vol. 278(PA).
- Maja Arnaut & Domagoj Vulin & Gabriela José García Lamberg & Lucija Jukić, 2021. "Simulation Analysis of CO 2 -EOR Process and Feasibility of CO 2 Storage during EOR," Energies, MDPI, vol. 14(4), pages 1-28, February.
- You, Junyu & Ampomah, William & Sun, Qian, 2020. "Co-optimizing water-alternating-carbon dioxide injection projects using a machine learning assisted computational framework," Applied Energy, Elsevier, vol. 279(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Abdoli, B. & Hooshmand, F. & MirHassani, S.A., 2023. "A novel stochastic programming model under endogenous uncertainty for the CCS-EOR planning problem," Applied Energy, Elsevier, vol. 338(C).
- Bocoum, Alassane Oumar & Rasaei, Mohammad Reza, 2023. "Multi-objective optimization of WAG injection using machine learning and data-driven Proxy models," Applied Energy, Elsevier, vol. 349(C).
- Jin, Wencheng & Atkinson, Trevor A. & Doughty, Christine & Neupane, Ghanashyam & Spycher, Nicolas & McLing, Travis L. & Dobson, Patrick F. & Smith, Robert & Podgorney, Robert, 2022. "Machine-learning-assisted high-temperature reservoir thermal energy storage optimization," Renewable Energy, Elsevier, vol. 197(C), pages 384-397.
- Yang, Jiuqiang & Lin, Niantian & Zhang, Kai & Fu, Chao & Zhang, Chong, 2024. "Transfer learning-based hybrid deep learning method for gas-bearing distribution prediction with insufficient training samples and uncertainty analysis," Energy, Elsevier, vol. 299(C).
- Aaditya Khanal & Md Fahim Shahriar, 2022. "Physics-Based Proxy Modeling of CO 2 Sequestration in Deep Saline Aquifers," Energies, MDPI, vol. 15(12), pages 1-23, June.
- Wei Jia & Ting Xiao & Zhidi Wu & Zhenxue Dai & Brian McPherson, 2021. "Impact of Mineral Reactive Surface Area on Forecasting Geological Carbon Sequestration in a CO 2 -EOR Field," Energies, MDPI, vol. 14(6), pages 1-22, March.
More about this item
Keywords
Flue gas-WAG injection; Multi-objective optimization; Pareto front; CO2 storage; Machine learning; CO2-EOR;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224001841. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.