IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v303y2024ics0360544224017559.html
   My bibliography  Save this article

Analysis of the possibility of reducing the heating time of thick-walled cylindrical components with holes

Author

Listed:
  • Taler, Jan
  • Taler, Dawid

Abstract

Thermal power plants, both fossil-fuel-fired and nuclear power plants operating in a modern energy system with a high share of renewable energy sources, should be characterised by high flexibility, i.e. operate safely over a wide range of load variations as having short start-up and shutdown times. Many years of experience in power plants and stress calculations in power plant components have shown that thick-walled pressure parts with complex shapes or holes in the walls determine the maximum allowable raising or lowering of the working fluid temperature. A new method for determining the optimum fluid temperature variations in a cylindrical component with openings was developed. The optimum fluid temperature variation was determined from the condition that the sum of the circumferential stresses from thermal and pressure load is equal to the allowable stress at the edge of the opening. The optimum fluid temperature variation over time was determined at constant pressure and with a linear change in pressure over time using the Heat Balance Integral Method (HBIM). HBIM is preferred over other numerical and analytical methods because it can accurately determine temperature distribution at the beginning of optimum heating for very short times.

Suggested Citation

  • Taler, Jan & Taler, Dawid, 2024. "Analysis of the possibility of reducing the heating time of thick-walled cylindrical components with holes," Energy, Elsevier, vol. 303(C).
  • Handle: RePEc:eee:energy:v:303:y:2024:i:c:s0360544224017559
    DOI: 10.1016/j.energy.2024.131982
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224017559
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131982?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. L. Mitchell & T. G. Myers, 2012. "Application of Heat Balance Integral Methods to One-Dimensional Phase Change Problems," International Journal of Differential Equations, Hindawi, vol. 2012, pages 1-22, April.
    2. Taler, Dawid & Dzierwa, Piotr & Kaczmarski, Karol & Taler, Jan, 2022. "Increase the flexibility of steam boilers by optimisation of critical pressure component heating," Energy, Elsevier, vol. 250(C).
    3. Taler, Dawid & Dzierwa, Piotr & Kaczmarski, Karol & Taler, Jan, 2021. "Optimisation of heating and cooling of pressure thick-walled components operating in the saturated steam area," Energy, Elsevier, vol. 231(C).
    4. Ribera, H. & Myers, T.G. & MacDevette, M.M., 2019. "Optimising the heat balance integral method in spherical and cylindrical Stefan problems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 216-231.
    5. Taler, Jan & Dzierwa, Piotr & Taler, Dawid & Harchut, Piotr, 2015. "Optimization of the boiler start-up taking into account thermal stresses," Energy, Elsevier, vol. 92(P1), pages 160-170.
    6. Taler, Jan & Węglowski, Bohdan & Taler, Dawid & Sobota, Tomasz & Dzierwa, Piotr & Trojan, Marcin & Madejski, Paweł & Pilarczyk, Marcin, 2015. "Determination of start-up curves for a boiler with natural circulation based on the analysis of stress distribution in critical pressure components," Energy, Elsevier, vol. 92(P1), pages 153-159.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Romero-Anton, N. & Martin-Escudero, K. & Portillo-Valdés, L.A. & Gómez-Elvira, I. & Salazar-Herran, E., 2018. "Improvement of auxiliary BI-DRUM boiler operation by dynamic simulation," Energy, Elsevier, vol. 148(C), pages 676-686.
    2. Taler, Dawid & Dzierwa, Piotr & Taler, Jan, 2020. "New method for determining the optimum fluid temperature when heating pressure thick-walled components with openings," Energy, Elsevier, vol. 200(C).
    3. Grądziel, Sławomir, 2019. "Analysis of thermal and flow phenomena in natural circulation boiler evaporator," Energy, Elsevier, vol. 172(C), pages 881-891.
    4. Taler, Jan & Trojan, Marcin & Dzierwa, Piotr & Kaczmarski, Karol & Węglowski, Bohdan & Taler, Dawid & Zima, Wiesław & Grądziel, Sławomir & Ocłoń, Paweł & Sobota, Tomasz & Rerak, Monika & Jaremkiewicz,, 2023. "The flexible boiler operation in a wide range of load changes with considering the strength and environmental restrictions," Energy, Elsevier, vol. 263(PB).
    5. Hübel, Moritz & Meinke, Sebastian & Andrén, Marcus T. & Wedding, Christoffer & Nocke, Jürgen & Gierow, Conrad & Hassel, Egon & Funkquist, Jonas, 2017. "Modelling and simulation of a coal-fired power plant for start-up optimisation," Applied Energy, Elsevier, vol. 208(C), pages 319-331.
    6. Rúa, Jairo & Nord, Lars O., 2020. "Optimal control of flexible natural gas combined cycles with stress monitoring: Linear vs nonlinear model predictive control," Applied Energy, Elsevier, vol. 265(C).
    7. Taler, Dawid & Dzierwa, Piotr & Kaczmarski, Karol & Taler, Jan, 2022. "Increase the flexibility of steam boilers by optimisation of critical pressure component heating," Energy, Elsevier, vol. 250(C).
    8. Zhang, Hengliang & Xie, Danmei & Yu, Yanzhi & Yu, Liangying, 2016. "Online optimal control schemes of inlet steam temperature during startup of steam turbines considering low cycle fatigue," Energy, Elsevier, vol. 117(P1), pages 105-115.
    9. Nowak, Grzegorz & Rusin, Andrzej & Łukowicz, Henryk & Tomala, Martyna, 2020. "Improving the power unit operation flexibility by the turbine start-up optimization," Energy, Elsevier, vol. 198(C).
    10. Rusin, Andrzej & Nowak, Grzegorz & Łukowicz, Henryk & Kosman, Wojciech & Chmielniak, Tadeusz & Kaczorowski, Maciej, 2021. "Selecting optimal conditions for the turbine warm and hot start-up," Energy, Elsevier, vol. 214(C).
    11. Andrzej Rusin & Martyna Tomala & Henryk Łukowicz & Grzegorz Nowak & Wojciech Kosman, 2021. "On-Line Control of Stresses in the Power Unit Pressure Elements Taking Account of Variable Heat Transfer Conditions," Energies, MDPI, vol. 14(15), pages 1-21, August.
    12. Taler, Jan & Zima, Wiesław & Ocłoń, Paweł & Grądziel, Sławomir & Taler, Dawid & Cebula, Artur & Jaremkiewicz, Magdalena & Korzeń, Anna & Cisek, Piotr & Kaczmarski, Karol & Majewski, Karol, 2019. "Mathematical model of a supercritical power boiler for simulating rapid changes in boiler thermal loading," Energy, Elsevier, vol. 175(C), pages 580-592.
    13. Zima, Wiesław & Grądziel, Sławomir & Cebula, Artur & Rerak, Monika & Kozak-Jagieła, Ewa & Pilarczyk, Marcin, 2023. "Mathematical model of a power boiler operation under rapid thermal load changes," Energy, Elsevier, vol. 263(PC).
    14. Sterkhov, K.V. & Khokhlov, D.A. & Zaichenko, M.N., 2024. "Zero carbon emission CCGT power plant with integrated solid fuel gasification," Energy, Elsevier, vol. 294(C).
    15. Erik Rosado-Tamariz & Miguel A. Zuniga-Garcia & Alfonso Campos-Amezcua & Rafael Batres, 2020. "A Framework for the Synthesis of Optimum Operating Profiles Based on Dynamic Simulation and a Micro Genetic Algorithm," Energies, MDPI, vol. 13(3), pages 1-23, February.
    16. Angerer, Michael & Kahlert, Steffen & Spliethoff, Hartmut, 2017. "Transient simulation and fatigue evaluation of fast gas turbine startups and shutdowns in a combined cycle plant with an innovative thermal buffer storage," Energy, Elsevier, vol. 130(C), pages 246-257.
    17. Sreepradha, Chandrasekharan & Panda, Rames Chandra & Bhuvaneswari, Natrajan Swaminathan, 2017. "Mathematical model for integrated coal fired thermal boiler using physical laws," Energy, Elsevier, vol. 118(C), pages 985-998.
    18. Neshumayev, Dmitri & Rummel, Leo & Konist, Alar & Ots, Arvo & Parve, Teet, 2018. "Power plant fuel consumption rate during load cycling," Applied Energy, Elsevier, vol. 224(C), pages 124-135.
    19. Marianito R. Rodrigo & Ngamta Thamwattana, 2021. "A Unified Analytical Approach to Fixed and Moving Boundary Problems for the Heat Equation," Mathematics, MDPI, vol. 9(7), pages 1-19, March.
    20. Ferruzza, Davide & Kærn, Martin Ryhl & Haglind, Fredrik, 2019. "Design of header and coil steam generators for concentrating solar power applications accounting for low-cycle fatigue requirements," Applied Energy, Elsevier, vol. 236(C), pages 793-803.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:303:y:2024:i:c:s0360544224017559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.