IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v173y2019icp1242-1255.html
   My bibliography  Save this article

Accelerated start-up of the steam turbine by means of controlled cooling steam injection

Author

Listed:
  • Badur, Janusz
  • Bryk, Mateusz

Abstract

The paper presents the results of a Thermal-FSI analysis of accelerated start-up of a turbine controlled by an additional injection of cooling steam. The work contains a description of the phenomena that occur during the start-up as well as the accompanying effects. Attention is paid to structural elements that limit the speed of regulation of the steam unit. In order to estimate the possibility of accelerating the turbine start-up, four turbine starting simulations were carried out. Two simulations relate to the 3 h start-up, two consecutive ones to the 2 h start-up. Then the results of flow and strength simulation were presented. In the work, global stress of the rotor of the HP turbine part and the local rotor stress in the first rotor notch were analyzed. As a result of the simulations and analyses, the possibility of reducing the required start-up time from 3 h to 2 h was confirmed.

Suggested Citation

  • Badur, Janusz & Bryk, Mateusz, 2019. "Accelerated start-up of the steam turbine by means of controlled cooling steam injection," Energy, Elsevier, vol. 173(C), pages 1242-1255.
  • Handle: RePEc:eee:energy:v:173:y:2019:i:c:p:1242-1255
    DOI: 10.1016/j.energy.2019.02.088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421930283X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.02.088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Badur, Janusz & Ziółkowski, Paweł & Sławiński, Daniel & Kornet, Sebastian, 2015. "An approach for estimation of water wall degradation within pulverized-coal boilers," Energy, Elsevier, vol. 92(P1), pages 142-152.
    2. Kosman, Gerard & Rusin, Andrzej, 2001. "The influence of the start-ups and cyclic loads of steam turbines conducted according to European standards on the component's life," Energy, Elsevier, vol. 26(12), pages 1083-1099.
    3. Ji, Dong-Mei & Sun, Jia-Qi & Dui, Yue & Ren, Jian-Xing, 2017. "The optimization of the start-up scheduling for a 320 MW steam turbine," Energy, Elsevier, vol. 125(C), pages 345-355.
    4. Taler, Jan & Dzierwa, Piotr & Taler, Dawid & Harchut, Piotr, 2015. "Optimization of the boiler start-up taking into account thermal stresses," Energy, Elsevier, vol. 92(P1), pages 160-170.
    5. Dong-mei, Ji & Jia-qi, Sun & Quan, Sun & Heng-Chao, Guo & Jian-xing, Ren & Quan-jun, Zhu, 2018. "Optimization of start-up scheduling and life assessment for a steam turbine," Energy, Elsevier, vol. 160(C), pages 19-32.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantin Osintsev & Sergei Aliukov & Sulpan Kuskarbekova, 2021. "Experimental Study of a Coil Type Steam Boiler Operated on an Oil Field in the Subarctic Continental Climate," Energies, MDPI, vol. 14(4), pages 1-23, February.
    2. Kruk-Gotzman, Sylwia & Ziółkowski, Paweł & Iliev, Iliya & Negreanu, Gabriel-Paul & Badur, Janusz, 2023. "Techno-economic evaluation of combined cycle gas turbine and a diabatic compressed air energy storage integration concept," Energy, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong-mei, Ji & Jia-qi, Sun & Quan, Sun & Heng-Chao, Guo & Jian-xing, Ren & Quan-jun, Zhu, 2018. "Optimization of start-up scheduling and life assessment for a steam turbine," Energy, Elsevier, vol. 160(C), pages 19-32.
    2. Nowak, Grzegorz & Rusin, Andrzej & Łukowicz, Henryk & Tomala, Martyna, 2020. "Improving the power unit operation flexibility by the turbine start-up optimization," Energy, Elsevier, vol. 198(C).
    3. Rusin, Andrzej & Nowak, Grzegorz & Łukowicz, Henryk & Kosman, Wojciech & Chmielniak, Tadeusz & Kaczorowski, Maciej, 2021. "Selecting optimal conditions for the turbine warm and hot start-up," Energy, Elsevier, vol. 214(C).
    4. Andrzej Rusin & Martyna Tomala & Henryk Łukowicz & Grzegorz Nowak & Wojciech Kosman, 2021. "On-Line Control of Stresses in the Power Unit Pressure Elements Taking Account of Variable Heat Transfer Conditions," Energies, MDPI, vol. 14(15), pages 1-21, August.
    5. Romero-Anton, N. & Martin-Escudero, K. & Portillo-Valdés, L.A. & Gómez-Elvira, I. & Salazar-Herran, E., 2018. "Improvement of auxiliary BI-DRUM boiler operation by dynamic simulation," Energy, Elsevier, vol. 148(C), pages 676-686.
    6. Sterkhov, K.V. & Khokhlov, D.A. & Zaichenko, M.N., 2024. "Zero carbon emission CCGT power plant with integrated solid fuel gasification," Energy, Elsevier, vol. 294(C).
    7. Erik Rosado-Tamariz & Miguel A. Zuniga-Garcia & Alfonso Campos-Amezcua & Rafael Batres, 2020. "A Framework for the Synthesis of Optimum Operating Profiles Based on Dynamic Simulation and a Micro Genetic Algorithm," Energies, MDPI, vol. 13(3), pages 1-23, February.
    8. Ji, Dong-Mei & Sun, Jia-Qi & Dui, Yue & Ren, Jian-Xing, 2017. "The optimization of the start-up scheduling for a 320 MW steam turbine," Energy, Elsevier, vol. 125(C), pages 345-355.
    9. Ommen, Torben & Markussen, Wiebke Brix & Elmegaard, Brian, 2014. "Comparison of linear, mixed integer and non-linear programming methods in energy system dispatch modelling," Energy, Elsevier, vol. 74(C), pages 109-118.
    10. Taler, Dawid & Dzierwa, Piotr & Taler, Jan, 2020. "New method for determining the optimum fluid temperature when heating pressure thick-walled components with openings," Energy, Elsevier, vol. 200(C).
    11. Sreepradha, Chandrasekharan & Panda, Rames Chandra & Bhuvaneswari, Natrajan Swaminathan, 2017. "Mathematical model for integrated coal fired thermal boiler using physical laws," Energy, Elsevier, vol. 118(C), pages 985-998.
    12. Grądziel, Sławomir, 2019. "Analysis of thermal and flow phenomena in natural circulation boiler evaporator," Energy, Elsevier, vol. 172(C), pages 881-891.
    13. Neshumayev, Dmitri & Rummel, Leo & Konist, Alar & Ots, Arvo & Parve, Teet, 2018. "Power plant fuel consumption rate during load cycling," Applied Energy, Elsevier, vol. 224(C), pages 124-135.
    14. Taler, Jan & Trojan, Marcin & Dzierwa, Piotr & Kaczmarski, Karol & Węglowski, Bohdan & Taler, Dawid & Zima, Wiesław & Grądziel, Sławomir & Ocłoń, Paweł & Sobota, Tomasz & Rerak, Monika & Jaremkiewicz,, 2023. "The flexible boiler operation in a wide range of load changes with considering the strength and environmental restrictions," Energy, Elsevier, vol. 263(PB).
    15. Hübel, Moritz & Meinke, Sebastian & Andrén, Marcus T. & Wedding, Christoffer & Nocke, Jürgen & Gierow, Conrad & Hassel, Egon & Funkquist, Jonas, 2017. "Modelling and simulation of a coal-fired power plant for start-up optimisation," Applied Energy, Elsevier, vol. 208(C), pages 319-331.
    16. Taler, Jan & Taler, Dawid, 2024. "Analysis of the possibility of reducing the heating time of thick-walled cylindrical components with holes," Energy, Elsevier, vol. 303(C).
    17. Rúa, Jairo & Nord, Lars O., 2020. "Optimal control of flexible natural gas combined cycles with stress monitoring: Linear vs nonlinear model predictive control," Applied Energy, Elsevier, vol. 265(C).
    18. Badur, Janusz & Lemański, Marcin & Kowalczyk, Tomasz & Ziółkowski, Paweł & Kornet, Sebastian, 2018. "Zero-dimensional robust model of an SOFC with internal reforming for hybrid energy cycles," Energy, Elsevier, vol. 158(C), pages 128-138.
    19. Cisek, Piotr & Taler, Dawid, 2019. "Numerical analysis and performance assessment of the Thermal Energy Storage unit aimed to be utilized in Smart Electric Thermal Storage (SETS)," Energy, Elsevier, vol. 173(C), pages 755-771.
    20. Sergio Rech, 2019. "Smart Energy Systems: Guidelines for Modelling and Optimizing a Fleet of Units of Different Configurations," Energies, MDPI, vol. 12(7), pages 1-36, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:173:y:2019:i:c:p:1242-1255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.