IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics0360544224015950.html
   My bibliography  Save this article

Physics-informed deep residual neural network for finned-tube evaporator performance prediction

Author

Listed:
  • Liang, Xing-Yu
  • Zhang, Bo
  • Zhang, Chun-Lu

Abstract

Finned-tube heat exchangers are extensively used in industrial and daily life. As complex system designs and digital twins increase, higher demands arise for predictive modeling of finned-tube heat exchanger performance. Previous studies faced issues like disparities in evaporator performance under dry and wet conditions, inaccurate predictions of refrigerant pressure drop, and a lack of comprehensive consideration for predicting the trends in physical details. With the evolution of AI algorithms, exploring novel modeling methods becomes essential. Therefore, this study proposes a physics-informed deep residual network model for accurate performance prediction of finned-tube evaporators. The model achieved mean absolute error of 0.14 % for heat transfer rate prediction, 0.36 % for refrigerant pressure drop prediction, and 0.49 % for air pressure drop prediction. This model addresses previous issues of performance disparities under dry and wet conditions and high errors in refrigerant pressure drop prediction. The proposed deep residual network model is found much better performance in capturing physical details than other machine learning approaches. It can serve as a benchmark model for transfer learning or complex system modeling. The method of determining the structure of residual networks through a priori physical knowledge also provides a new perspective on modeling physical systems.

Suggested Citation

  • Liang, Xing-Yu & Zhang, Bo & Zhang, Chun-Lu, 2024. "Physics-informed deep residual neural network for finned-tube evaporator performance prediction," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015950
    DOI: 10.1016/j.energy.2024.131822
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224015950
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131822?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.