IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v285y2023ics0360544223027202.html
   My bibliography  Save this article

Biomass chemical looping: Advancements and strategies with the moving bed reactor for gasification and hydrogen generation

Author

Listed:
  • Falascino, Eric
  • Joshi, Rushikesh K.
  • Kovach, Louann
  • Isom, Lindsay
  • Tong, Andrew
  • Fan, Liang-Shih

Abstract

This work presents advances in OSU's BTS technology, targeted explicitly toward hydrogen production from experimental and process simulation results. Two experimental parameters: residence time and enhancer steam flowrate, are explored. A volume reduction of ∼67 % can be achieved in Reducer while ensuring high char conversion. The steam injection enhances char gasification and H2 content; however, it may lead to increased tar content due to decreased gas residence time. The steam injection of ∼5 % of the inlet carbon flow rate can be adequate for efficient biomass gasification and injecting additional steam downstream into the WGS unit is optimal for H2 generation. Two cases that implement modularization for tighter process integration are compared with the conventional BTS and BDCL processes for H2 generation. The application of modularization eliminates the energy-intensive AGR unit and increases ETE by ∼17 % over the BTS process. Modularization offers product flexibility and increased control with lower operational risks over the BDCL process but at 7 % lower ETE, which can be attributed to the high amounts of oxygen present in the biomass, leading to decreased syngas purity. H2 yield can be further increased by co-injection of low oxygen feedstocks such as plastics, which can increase H2 yield by ∼12 %.

Suggested Citation

  • Falascino, Eric & Joshi, Rushikesh K. & Kovach, Louann & Isom, Lindsay & Tong, Andrew & Fan, Liang-Shih, 2023. "Biomass chemical looping: Advancements and strategies with the moving bed reactor for gasification and hydrogen generation," Energy, Elsevier, vol. 285(C).
  • Handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223027202
    DOI: 10.1016/j.energy.2023.129326
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223027202
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129326?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Dikai & Zhang, Yitao & Hsieh, Tien-Lin & Guo, Mengqing & Qin, Lang & Chung, Cheng & Fan, Liang-Shih & Tong, Andrew, 2018. "A novel chemical looping partial oxidation process for thermochemical conversion of biomass to syngas," Applied Energy, Elsevier, vol. 222(C), pages 119-131.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suarez, Mayra Alejandra & Januszewicz, Katarzyna & Cortazar, Maria & Lopez, Gartzen & Santamaria, Laura & Olazar, Martin & Artetxe, Maite & Amutio, Maider, 2024. "Selective H2 production from plastic waste through pyrolysis and in-line oxidative steam reforming," Energy, Elsevier, vol. 302(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Hui & Park, Ah-Hyung Alissa, 2020. "Bio-energy with carbon capture and storage via alkaline thermal Treatment: Production of high purity H2 from wet wheat straw grass with CO2 capture," Applied Energy, Elsevier, vol. 264(C).
    2. Kim, Dongin & Han, Jeehoon, 2020. "Techno-economic and climate impact analysis of carbon utilization process for methanol production from blast furnace gas over Cu/ZnO/Al2O3 catalyst," Energy, Elsevier, vol. 198(C).
    3. Shah, Vedant & Cheng, Zhuo & Baser, Deven S. & Fan, Jonathan A. & Fan, Liang-Shih, 2021. "Highly Selective Production of Syngas from Chemical Looping Reforming of Methane with CO2 Utilization on MgO-supported Calcium Ferrite Redox Materials," Applied Energy, Elsevier, vol. 282(PA).
    4. Mohamed, Usama & Zhao, Yingjie & Huang, Yi & Cui, Yang & Shi, Lijuan & Li, Congming & Pourkashanian, Mohamed & Wei, Guoqiang & Yi, Qun & Nimmo, William, 2020. "Sustainability evaluation of biomass direct gasification using chemical looping technology for power generation with and w/o CO2 capture," Energy, Elsevier, vol. 205(C).
    5. Nadgouda, Sourabh G. & Guo, Mengqing & Tong, Andrew & Fan, L.-S., 2019. "High purity syngas and hydrogen coproduction using copper-iron oxygen carriers in chemical looping reforming process," Applied Energy, Elsevier, vol. 235(C), pages 1415-1426.
    6. Chen, Yu-Yen & Nadgouda, Sourabh & Shah, Vedant & Fan, Liang-Shih & Tong, Andrew, 2020. "Oxidation kinetic modelling of Fe-based oxygen carriers for chemical looping applications: Impact of the topochemical effect," Applied Energy, Elsevier, vol. 279(C).
    7. Knutsson, Pavleta & Maric, Jelena & Knutsson, Jesper & Larsson, Anton & Breitholtz, Claes & Seemann, Martin, 2019. "Potassium speciation and distribution for the K2CO3 additive-induced activation/deactivation of olivine during gasification of woody biomass," Applied Energy, Elsevier, vol. 248(C), pages 538-544.
    8. Dong, Ruihan & Yang, Shiliang & Hu, Jianhang & Chen, Fangjun & Bao, Guirong & Wang, Hua, 2022. "CFD investigation of the in-situ gasification process of biomass in the chemical looping combustion system," Renewable Energy, Elsevier, vol. 185(C), pages 1245-1260.
    9. Yang, Xiaoxia & Tian, Sicong & Kan, Tao & Zhu, Yuxiang & Xu, Honghui & Strezov, Vladimir & Nelson, Peter & Jiang, Yijiao, 2019. "Sorption-enhanced thermochemical conversion of sewage sludge to syngas with intensified carbon utilization," Applied Energy, Elsevier, vol. 254(C).
    10. Wang, Lin & Yang, Yongbin & Ou, Yang & Zhong, Qiang & Zhang, Yan & Yi, Lingyun & Li, Qian & Huang, Zhucheng & Jiang, Tao, 2024. "In-depth study on the synergistic conversion mechanism of iron ore with waste biochar for co-producing directly reduced iron (DRI) and syngas," Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223027202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.