IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v304y2024ics0360544224018929.html
   My bibliography  Save this article

Syngas production through CO2-mediated pyrolysis of polyoxymethylene

Author

Listed:
  • Kwon, Dohee
  • Choi, Dongho
  • Song, Hocheol
  • Lee, Jechan
  • Jung, Sungyup
  • Kwon, Eilhann E.

Abstract

Plastics have become an integral part of our daily lives owing to their exceptional physicochemical properties, such as durability, low density, and cost-effectiveness, compared to traditional materials. However, the escalating production of plastics has resulted in a proportional increase in waste generation. This paper proposes environmentally benign valorization/disposal methods for plastic waste, with a particular focus on adopting a pyrolysis process that utilizes CO2 as a strategic reaction medium. As a case study, polyoxymethylene (POM), a widely used engineering plastic, was valorized through CO2-mediated pyrolysis. This study experimentally demonstrates the mechanistic effectiveness of CO2 in expediting the reaction kinetics of the thermal decomposition, specifically dehydrogenation and deoxygenation, of volatile matter derived from POM. The results revealed that employing CO2 as a reactant in the two-stage pyrolysis at 500 °C produced 30.47 mmol more syngas than under inert conditions. In conclusion, the strategic utilization of a two-stage pyrolysis process at 500 °C with CO2 as the reactant has emerged as an effective approach to the valorization of POM. This study contributes to developing sustainable methods for managing plastic waste by addressing environmental concerns and the need for efficient material recovery.

Suggested Citation

  • Kwon, Dohee & Choi, Dongho & Song, Hocheol & Lee, Jechan & Jung, Sungyup & Kwon, Eilhann E., 2024. "Syngas production through CO2-mediated pyrolysis of polyoxymethylene," Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224018929
    DOI: 10.1016/j.energy.2024.132118
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224018929
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Choi, Yujin & Wang, Shuang & Yoon, Young Min & Jang, Jae Jun & Kim, Daewook & Ryu, Ho-Jung & Lee, Doyeon & Won, Yooseob & Nam, Hyungseok & Hwang, Byungwook, 2024. "Sustainable strategy for converting plastic waste into energy over pyrolysis: A comparative study of fluidized-bed and fixed-bed reactors," Energy, Elsevier, vol. 286(C).
    2. Yuting Zhou & Joaquín Rodríguez-López & Jeffrey S. Moore, 2023. "Heterogenous electromediated depolymerization of highly crystalline polyoxymethylene," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    4. Makarichi, Luke & Jutidamrongphan, Warangkana & Techato, Kua-anan, 2018. "The evolution of waste-to-energy incineration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 812-821.
    5. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    6. Patrick Schroeder & Kartika Anggraeni & Uwe Weber, 2019. "The Relevance of Circular Economy Practices to the Sustainable Development Goals," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 77-95, February.
    7. Choi, Dongho & Jung, Sungyup & Lee, Sang Soo & Lin, Kun-Yi Andrew & Park, Young-Kwon & Kim, Hana & Tsang, Yiu Fai & Kwon, Eilhann E., 2021. "Leveraging carbon dioxide to control the H2/CO ratio in catalytic pyrolysis of fishing net waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    8. Fang, Xiaojie & Wu, Caifang & Song, Yu & Li, Jiuqing & Jiang, Xiuming & Zhang, Hewei & Wen, Dexiu & Liu, Ningning, 2024. "The impact of pyrolysis temperature on the evolution of the maceral and mineral geochemistry in a subbituminous coal," Energy, Elsevier, vol. 290(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suarez, Mayra Alejandra & Januszewicz, Katarzyna & Cortazar, Maria & Lopez, Gartzen & Santamaria, Laura & Olazar, Martin & Artetxe, Maite & Amutio, Maider, 2024. "Selective H2 production from plastic waste through pyrolysis and in-line oxidative steam reforming," Energy, Elsevier, vol. 302(C).
    2. Pina Puntillo, 2023. "Circular economy business models: Towards achieving sustainable development goals in the waste management sector—Empirical evidence and theoretical implications," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(2), pages 941-954, March.
    3. Muhammad Altaf & Wesam Salah Alaloul & Muhammad Ali Musarat & Abdul Hannan Qureshi, 2023. "Life cycle cost analysis (LCCA) of construction projects: sustainability perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12071-12118, November.
    4. German Arana‐Landin & Waleska Sigüenza & Beñat Landeta‐Manzano & Iker Laskurain‐Iturbe, 2024. "Circular economy: On the road to ISO 59000 family of standards," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 31(3), pages 1977-2009, May.
    5. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    6. Bruno Michel Roman Pais Seles & Janaina Mascarenhas & Ana Beatriz Lopes de Sousa Jabbour & Adriana Hoffman Trevisan, 2022. "Smoothing the circular economy transition: The role of resources and capabilities enablers," Business Strategy and the Environment, Wiley Blackwell, vol. 31(4), pages 1814-1837, May.
    7. Wei, Aiping & Zakari, Abdulrasheed & Tawiah, Vincent & Aleesa, Noha, 2024. "Cultivating resilient economies through responsible mineral resource trade: Does eco-resourcing rebate matter?," Resources Policy, Elsevier, vol. 89(C).
    8. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    9. Durán-Romero, Gemma & López, Ana M. & Beliaeva, Tatiana & Ferasso, Marcos & Garonne, Christophe & Jones, Paul, 2020. "Bridging the gap between circular economy and climate change mitigation policies through eco-innovations and Quintuple Helix Model," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    10. Yang, Yuhan & Wang, Tiancheng & Hu, Hongyun & Yao, Dingding & Zou, Chan & Xu, Kai & Li, Xian & Yao, Hong, 2021. "Influence of partial components removal on pyrolysis behavior of lignocellulosic biowaste in molten salts," Renewable Energy, Elsevier, vol. 180(C), pages 616-625.
    11. Di Foggia, Giacomo & Beccarello, Massimo, 2021. "Drivers of municipal solid waste management cost based on cost models inherent to sorted and unsorted waste," SocArXiv s6q3m, Center for Open Science.
    12. Toorajipour, Reza & Oghazi, Pejvak & Sohrabpour, Vahid & Patel, Pankaj C. & Mostaghel, Rana, 2022. "Block by block: A blockchain-based peer-to-peer business transaction for international trade," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    13. Bassey, Uduak & Sarquah, Khadija & Hartmann, Michael & Tom, Abasi-ofon & Beck, Gesa & Antwi, Edward & Narra, Satyanarayana & Nelles, Michael, 2023. "Thermal treatment options for single-use, multilayered and composite waste plastics in Africa," Energy, Elsevier, vol. 270(C).
    14. Di Foggia, Giacomo & Beccarello, Massimo, 2021. "Designing waste management systems to meet circular economy goals: The Italian case," MPRA Paper 105959, University Library of Munich, Germany.
    15. Ayub, Yousaf & Ren, Jingzheng & Shi, Tao & Shen, Weifeng & He, Chang, 2023. "Poultry litter valorization: Development and optimization of an electro-chemical and thermal tri-generation process using an extreme gradient boosting algorithm," Energy, Elsevier, vol. 263(PC).
    16. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    17. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    18. Ye, Lian & Zhang, Jianliang & Wang, Guangwei & Wang, Chen & Mao, Xiaoming & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Li, Jinhua & Wang, Chuan, 2023. "Feasibility analysis of plastic and biomass hydrochar for blast furnace injection," Energy, Elsevier, vol. 263(PD).
    19. D. D’Amato, 2021. "Sustainability Narratives as Transformative Solution Pathways: Zooming in on the Circular Economy," Circular Economy and Sustainability, Springer, vol. 1(1), pages 231-242, June.
    20. Elhambakhsh, Abbas & Van Duc Long, Nguyen & Lamichhane, Pradeep & Hessel, Volker, 2023. "Recent progress and future directions in plasma-assisted biomass conversion to hydrogen," Renewable Energy, Elsevier, vol. 218(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224018929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.