IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v301y2024ics036054422401510x.html
   My bibliography  Save this article

Fast penetration of electric vehicles in China cannot achieve steep cuts in air emissions from road transport without synchronized renewable electricity expansion

Author

Listed:
  • Li, Xiang
  • Yan, Xiaoyu

Abstract

Adopting electric vehicles (EVs) is considered to be a critical strategy to achieve China's goals of reducing air pollutant emissions and reaching carbon neutrality. However, the effects of different EV and renewable electricity (RE) expansion scenarios on air pollutants and carbon emissions from China's road transport have rarely been comprehensively assessed. This study developed a highly disaggregated provincial level inventory for CO, NOX, PM2.5, PM10, SO2, and CO2 emissions from China's road transport in 2020, using a bottom-up approach that considered crucial technical factors such as vehicle type, fuel type and vehicle age. This inventory was then used as a basis to analyse future emissions trajectories up to 2050 under various provincial and regional level EV and electricity development pathways. The results suggest that without changing the current electricity generation mix, rapidly growing EVs could aggravate air pollution in China by increasing NOX, PM2.5, PM10, and SO2 emissions. The Chinese government's current targets for EV market shares can help achieve peak road transport CO2 emissions around 2030. However, if RE expansion is slow, then the EV targets would achieve only limited CO2, NOX, and CO emission reduction while increasing SO2, PM2.5, and PM10 emissions.

Suggested Citation

  • Li, Xiang & Yan, Xiaoyu, 2024. "Fast penetration of electric vehicles in China cannot achieve steep cuts in air emissions from road transport without synchronized renewable electricity expansion," Energy, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:energy:v:301:y:2024:i:c:s036054422401510x
    DOI: 10.1016/j.energy.2024.131737
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422401510X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131737?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaowei Song & Yongpei Hao, 2021. "Research on the Vehicle Emission Characteristics and Its Prevention and Control Strategy in the Central Plains Urban Agglomeration, China," Sustainability, MDPI, vol. 13(3), pages 1-17, January.
    2. Hamid M. Pouran & Seyed M. Karimi & Mariana Padilha Campos Lopes & Yong Sheng, 2022. "What China’s Environmental Policy Means for PV Solar, Electric Vehicles, and Carbon Capture and Storage Technologies," Energies, MDPI, vol. 15(23), pages 1-13, November.
    3. Yali Zheng & Xiaoyi He & Hewu Wang & Michael Wang & Shaojun Zhang & Dong Ma & Binggang Wang & Ye Wu, 2020. "Well-to-wheels greenhouse gas and air pollutant emissions from battery electric vehicles in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(3), pages 355-370, March.
    4. Yuhua Zheng & Shiqi Li & Shuangshuang Xu, 2019. "Transport oil product consumption and GHG emission reduction potential in China: An electric vehicle-based scenario analysis," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-26, September.
    5. Alabi, Tobi Michael & Lu, Lin & Yang, Zaiyue, 2022. "Data-driven optimal scheduling of multi-energy system virtual power plant (MEVPP) incorporating carbon capture system (CCS), electric vehicle flexibility, and clean energy marketer (CEM) strategy," Applied Energy, Elsevier, vol. 314(C).
    6. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
    7. Feiqi Liu & Fuquan Zhao & Zongwei Liu & Han Hao, 2018. "China’s Electric Vehicle Deployment: Energy and Greenhouse Gas Emission Impacts," Energies, MDPI, vol. 11(12), pages 1-19, November.
    8. Yingying Liu & Xueyan Zhao & Jing Wang & Shengnan Zhu & Bin Han & Di Zhao & Xinhua Wang & Chunmei Geng, 2022. "A Comprehensive 2018-Based Vehicle Emission Inventory and Its Spatial–Temporal Characteristics in the Central Liaoning Urban Agglomeration, China," IJERPH, MDPI, vol. 19(4), pages 1-19, February.
    9. HE, Ling-Yun & QIU, Lu-Yi, 2016. "Transport demand, harmful emissions, environment and health co-benefits in China," Energy Policy, Elsevier, vol. 97(C), pages 267-275.
    10. Shi, Lei & Wu, Rongxin & Lin, Boqiang, 2023. "Where will go for electric vehicles in China after the government subsidy incentives are abolished? A controversial consumer perspective," Energy, Elsevier, vol. 262(PA).
    11. Liu, Xiaoling & Sun, Xiaohua & Zheng, Hui & Huang, Dongdong, 2021. "Do policy incentives drive electric vehicle adoption? Evidence from China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 49-62.
    12. Xinyu Liang & Shaojun Zhang & Ye Wu & Jia Xing & Xiaoyi He & K. Max Zhang & Shuxiao Wang & Jiming Hao, 2019. "Air quality and health benefits from fleet electrification in China," Nature Sustainability, Nature, vol. 2(10), pages 962-971, October.
    13. Li, Bo & Ma, Ziming & Hidalgo-Gonzalez, Patricia & Lathem, Alex & Fedorova, Natalie & He, Gang & Zhong, Haiwang & Chen, Minyou & Kammen, Daniel M., 2021. "Modeling the impact of EVs in the Chinese power system: Pathways for implementing emissions reduction commitments in the power and transportation sectors," Energy Policy, Elsevier, vol. 149(C).
    14. Zhang, Haonan & Zhang, Xingping & Yuan, Jiahai, 2020. "Transition of China's power sector consistent with Paris Agreement into 2050: Pathways and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    15. Jingjing Wang & Chuan Sha & Sivmey Ly & Hao Wang & Yu Sun & Meng Guo, 2023. "Life Cycle Carbon Emissions and an Uncertainty Analysis of Recycled Asphalt Mixtures," Sustainability, MDPI, vol. 15(23), pages 1-17, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Junling & Yin, Mingjian & Xia-Hou, Qinrui & Wang, Ke & Zou, Ji, 2021. "Comparison of sectoral low-carbon transition pathways in China under the nationally determined contribution and 2 °C targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    3. Luo, Shihua & Hu, Weihao & Liu, Wen & Zhang, Zhenyuan & Bai, Chunguang & Huang, Qi & Chen, Zhe, 2022. "Study on the decarbonization in China's power sector under the background of carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    4. Isabella Yunfei Zeng & Shiqi Tan & Jianliang Xiong & Xuesong Ding & Yawen Li & Tian Wu, 2021. "Estimation of Real-World Fuel Consumption Rate of Light-Duty Vehicles Based on the Records Reported by Vehicle Owners," Energies, MDPI, vol. 14(23), pages 1-19, November.
    5. Yu, Biying & Tan, Jin-Xiao & Zhang, Shitong, 2024. "Uncertainties in the technological pathway towards low-carbon freight transport under carbon neutral target in China," Applied Energy, Elsevier, vol. 365(C).
    6. Xiong, Siqin & Yuan, Yi & Yao, Jia & Bai, Bo & Ma, Xiaoming, 2023. "Exploring consumer preferences for electric vehicles based on the random coefficient logit model," Energy, Elsevier, vol. 263(PA).
    7. Qin, Quande & Li, Xin & Li, Li & Zhen, Wei & Wei, Yi-Ming, 2017. "Air emissions perspective on energy efficiency: An empirical analysis of China’s coastal areas," Applied Energy, Elsevier, vol. 185(P1), pages 604-614.
    8. Meelan Thondoo & David Rojas-Rueda & Joyeeta Gupta & Daniel H. de Vries & Mark J. Nieuwenhuijsen, 2019. "Systematic Literature Review of Health Impact Assessments in Low and Middle-Income Countries," IJERPH, MDPI, vol. 16(11), pages 1-21, June.
    9. Zhihan Shi & Weisong Han & Guangming Zhang & Zhiqing Bai & Mingxiang Zhu & Xiaodong Lv, 2022. "Research on Low-Carbon Energy Sharing through the Alliance of Integrated Energy Systems with Multiple Uncertainties," Energies, MDPI, vol. 15(24), pages 1-20, December.
    10. Tao, Miaomiao, 2024. "Dynamics between electric vehicle uptake and green development: Understanding the role of local government competition," Transport Policy, Elsevier, vol. 146(C), pages 227-240.
    11. Matteo Böhm & Mirco Nanni & Luca Pappalardo, 2022. "Gross polluters and vehicle emissions reduction," Nature Sustainability, Nature, vol. 5(8), pages 699-707, August.
    12. Abdelfettah Laouzai & Rachid Ouafi, 2022. "A prediction model for atmospheric pollution reduction from urban traffic," Environment and Planning B, , vol. 49(2), pages 566-584, February.
    13. Jiang, Tao & Wu, Chenghao & Huang, Tao & Zhang, Rufeng & Li, Xue, 2024. "Optimal market participation of VPPs in TSO-DSO coordinated energy and flexibility markets," Applied Energy, Elsevier, vol. 360(C).
    14. Wang, Zhuowei & Yu, Jiangbo (Gabe) & Chen, Anthony & Fu, Xiaowen, 2024. "Subsidy policies towards zero-emission bus fleets: A systematic technical-economic analysis," Transport Policy, Elsevier, vol. 150(C), pages 1-13.
    15. Wen, Yifan & Zhang, Shaojun & Zhang, Jingran & Bao, Shuanghui & Wu, Xiaomeng & Yang, Daoyuan & Wu, Ye, 2020. "Mapping dynamic road emissions for a megacity by using open-access traffic congestion index data," Applied Energy, Elsevier, vol. 260(C).
    16. Xie, Shaobo & Qi, Shanwei & Lang, Kun & Tang, Xiaolin & Lin, Xianke, 2020. "Coordinated management of connected plug-in hybrid electric buses for energy saving, inter-vehicle safety, and battery health," Applied Energy, Elsevier, vol. 268(C).
    17. Stephany Isabel Vallarta-Serrano & Ana Bricia Galindo-Muro & Riccardo Cespi & Rogelio Bustamante-Bello, 2023. "Analysis of GHG Emission from Cargo Vehicles in Megacities: The Case of the Metropolitan Zone of the Valley of Mexico," Energies, MDPI, vol. 16(13), pages 1-19, June.
    18. Yuan, Zhiyi & Ou, Xunmin & Peng, Tianduo & Yan, Xiaoyu, 2019. "Life cycle greenhouse gas emissions of multi-pathways natural gas vehicles in china considering methane leakage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    19. Ziru Feng & Tian Cai & Kangli Xiang & Chenxi Xiang & Lei Hou, 2019. "Evaluating the Impact of Fossil Fuel Vehicle Exit on the Oil Demand in China," Energies, MDPI, vol. 12(14), pages 1-18, July.
    20. Norouzi, Mohammadali & Aghaei, Jamshid & Niknam, Taher & Alipour, Mohammadali & Pirouzi, Sasan & Lehtonen, Matti, 2023. "Risk-averse and flexi-intelligent scheduling of microgrids based on hybrid Boltzmann machines and cascade neural network forecasting," Applied Energy, Elsevier, vol. 348(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:301:y:2024:i:c:s036054422401510x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.