IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p7915-d687690.html
   My bibliography  Save this article

Estimation of Real-World Fuel Consumption Rate of Light-Duty Vehicles Based on the Records Reported by Vehicle Owners

Author

Listed:
  • Isabella Yunfei Zeng

    (UK-China (Guangdong) CCUS Centre, Guangzhou 510663, China)

  • Shiqi Tan

    (Department of Automation, Tsinghua University, Beijing 100084, China)

  • Jianliang Xiong

    (School of Economics and Management, Tsinghua University, Beijing 100084, China)

  • Xuesong Ding

    (School of Economics and Management, Beijing University of Posts and Telecommunications, Beijing 100876, China)

  • Yawen Li

    (School of Economics and Management, Beijing University of Posts and Telecommunications, Beijing 100876, China)

  • Tian Wu

    (Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China)

Abstract

Private vehicle travel is the most basic mode of transportation, so that an effective way to control the real-world fuel consumption rate of light-duty vehicles plays a vital role in promoting sustainable economic growth as well as achieving a green low-carbon society. Therefore, the factors impacting individual carbon emissions must be elucidated. This study builds five different models to estimate the real-world fuel consumption rate of light-duty vehicles in China. The results reveal that the light gradient boosting machine (LightGBM) model performs better than the linear regression, naïve Bayes regression, neural network regression, and decision tree regression models, with a mean absolute error of 0.911 L/100 km, a mean absolute percentage error of 10.4%, a mean square error of 1.536, and an R-squared (R 2 ) value of 0.642. This study also assesses a large pool of potential factors affecting real-world fuel consumption, from which the three most important factors are extracted, namely, reference fuel-consumption-rate value, engine power, and light-duty vehicle brand. Furthermore, a comparative analysis reveals that the vehicle factors with the greatest impact are the vehicle brand, engine power, and engine displacement. The average air pressure, average temperature, and sunshine time are the three most important climate factors.

Suggested Citation

  • Isabella Yunfei Zeng & Shiqi Tan & Jianliang Xiong & Xuesong Ding & Yawen Li & Tian Wu, 2021. "Estimation of Real-World Fuel Consumption Rate of Light-Duty Vehicles Based on the Records Reported by Vehicle Owners," Energies, MDPI, vol. 14(23), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7915-:d:687690
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/7915/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/7915/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Najafi, G. & Ghobadian, B. & Tavakoli, T. & Buttsworth, D.R. & Yusaf, T.F. & Faizollahnejad, M., 2009. "Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network," Applied Energy, Elsevier, vol. 86(5), pages 630-639, May.
    2. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
    3. Christoffersen, Peter & Jacobs, Kris, 2004. "The importance of the loss function in option valuation," Journal of Financial Economics, Elsevier, vol. 72(2), pages 291-318, May.
    4. Xinyu Liang & Shaojun Zhang & Ye Wu & Jia Xing & Xiaoyi He & K. Max Zhang & Shuxiao Wang & Jiming Hao, 2019. "Air quality and health benefits from fleet electrification in China," Nature Sustainability, Nature, vol. 2(10), pages 962-971, October.
    5. Shan Jiang & Hsinchun Chen, 2019. "Examining patterns of scientific knowledge diffusion based on knowledge cyber infrastructure: a multi-dimensional network approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1599-1617, December.
    6. Yusaf, Talal F. & Buttsworth, D.R. & Saleh, Khalid H. & Yousif, B.F., 2010. "CNG-diesel engine performance and exhaust emission analysis with the aid of artificial neural network," Applied Energy, Elsevier, vol. 87(5), pages 1661-1669, May.
    7. Zhou, Feng & Joshi, Shailesh N. & Rhote-Vaney, Raphael & Dede, Ercan M., 2017. "A review and future application of Rankine Cycle to passenger vehicles for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1008-1021.
    8. Neeraj Dhanraj Bokde & Zaher Mundher Yaseen & Gorm Bruun Andersen, 2020. "ForecastTB—An R Package as a Test-Bench for Time Series Forecasting—Application of Wind Speed and Solar Radiation Modeling," Energies, MDPI, vol. 13(10), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yushan Yang & Nuoya Gong & Keying Xie & Qingfei Liu, 2022. "Predicting Gasoline Vehicle Fuel Consumption in Energy and Environmental Impact Based on Machine Learning and Multidimensional Big Data," Energies, MDPI, vol. 15(5), pages 1-17, February.
    2. Dengfeng Zhao & Haiyang Li & Junjian Hou & Pengliang Gong & Yudong Zhong & Wenbin He & Zhijun Fu, 2023. "A Review of the Data-Driven Prediction Method of Vehicle Fuel Consumption," Energies, MDPI, vol. 16(14), pages 1-20, July.
    3. Seongin Jo & Hyung Jun Kim & Sang Il Kwon & Jong Tae Lee & Suhan Park, 2023. "Assessment of Energy Consumption Characteristics of Ultra-Heavy-Duty Vehicles under Real Driving Conditions," Energies, MDPI, vol. 16(5), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezaei, Javad & Shahbakhti, Mahdi & Bahri, Bahram & Aziz, Azhar Abdul, 2015. "Performance prediction of HCCI engines with oxygenated fuels using artificial neural networks," Applied Energy, Elsevier, vol. 138(C), pages 460-473.
    2. Kshirsagar, Charudatta M. & Anand, Ramanathan, 2017. "Artificial neural network applied forecast on a parametric study of Calophyllum inophyllum methyl ester-diesel engine out responses," Applied Energy, Elsevier, vol. 189(C), pages 555-567.
    3. Yusaf, T.F. & Yousif, B.F. & Elawad, M.M., 2011. "Crude palm oil fuel for diesel-engines: Experimental and ANN simulation approaches," Energy, Elsevier, vol. 36(8), pages 4871-4878.
    4. Muninathan, K. & Venkata Ramanan, M. & Monish, N. & Baskar, G., 2024. "Economic analysis and TOPSIS approach to optimize the CI engine characteristics using span 80 mixed carbon nanotubes emulsified Sapindus trifoliatus (soapnut) biodiesel by artificial neural network pr," Applied Energy, Elsevier, vol. 355(C).
    5. Mehra, Roopesh Kumar & Duan, Hao & Luo, Sijie & Rao, Anas & Ma, Fanhua, 2018. "Experimental and artificial neural network (ANN) study of hydrogen enriched compressed natural gas (HCNG) engine under various ignition timings and excess air ratios," Applied Energy, Elsevier, vol. 228(C), pages 736-754.
    6. Bahri, Bahram & Shahbakhti, Mahdi & Kannan, Kaushik & Aziz, Azhar Abdul, 2016. "Identification of ringing operation for low temperature combustion engines," Applied Energy, Elsevier, vol. 171(C), pages 142-152.
    7. Channapattana, S.V. & Pawar, Abhay A. & Kamble, Prashant G., 2017. "Optimisation of operating parameters of DI-CI engine fueled with second generation Bio-fuel and development of ANN based prediction model," Applied Energy, Elsevier, vol. 187(C), pages 84-95.
    8. Bendu, Harisankar & Deepak, B.B.V.L. & Murugan, S., 2017. "Multi-objective optimization of ethanol fuelled HCCI engine performance using hybrid GRNN–PSO," Applied Energy, Elsevier, vol. 187(C), pages 601-611.
    9. Yusri, I.M. & Abdul Majeed, A.P.P. & Mamat, R. & Ghazali, M.F. & Awad, Omar I. & Azmi, W.H., 2018. "A review on the application of response surface method and artificial neural network in engine performance and exhaust emissions characteristics in alternative fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 665-686.
    10. Song Hu & Stefano d’Ambrosio & Roberto Finesso & Andrea Manelli & Mario Rocco Marzano & Antonio Mittica & Loris Ventura & Hechun Wang & Yinyan Wang, 2019. "Comparison of Physics-Based, Semi-Empirical and Neural Network-Based Models for Model-Based Combustion Control in a 3.0 L Diesel Engine," Energies, MDPI, vol. 12(18), pages 1-41, September.
    11. Zhao, Jinxing & Xu, Min & Li, Mian & Wang, Bin & Liu, Shuangzhai, 2012. "Design and optimization of an Atkinson cycle engine with the Artificial Neural Network Method," Applied Energy, Elsevier, vol. 92(C), pages 492-502.
    12. Masum, B.M. & Masjuki, H.H. & Kalam, M.A. & Rizwanul Fattah, I.M. & Palash, S.M. & Abedin, M.J., 2013. "Effect of ethanol–gasoline blend on NOx emission in SI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 209-222.
    13. Bhowmik, Subrata & Paul, Abhishek & Panua, Rajsekhar & Ghosh, Subrata Kumar & Debroy, Durbadal, 2018. "Performance-exhaust emission prediction of diesosenol fueled diesel engine: An ANN coupled MORSM based optimization," Energy, Elsevier, vol. 153(C), pages 212-222.
    14. Liu, Jinlong & Huang, Qiao & Ulishney, Christopher & Dumitrescu, Cosmin E., 2021. "Machine learning assisted prediction of exhaust gas temperature of a heavy-duty natural gas spark ignition engine," Applied Energy, Elsevier, vol. 300(C).
    15. Roy, Sumit & Banerjee, Rahul & Bose, Probir Kumar, 2014. "Performance and exhaust emissions prediction of a CRDI assisted single cylinder diesel engine coupled with EGR using artificial neural network," Applied Energy, Elsevier, vol. 119(C), pages 330-340.
    16. Mohamed Ismail, Harun & Ng, Hoon Kiat & Queck, Cheen Wei & Gan, Suyin, 2012. "Artificial neural networks modelling of engine-out responses for a light-duty diesel engine fuelled with biodiesel blends," Applied Energy, Elsevier, vol. 92(C), pages 769-777.
    17. Cui, Yiran & del Baño Rollin, Sebastian & Germano, Guido, 2017. "Full and fast calibration of the Heston stochastic volatility model," European Journal of Operational Research, Elsevier, vol. 263(2), pages 625-638.
    18. Xiong, Siqin & Yuan, Yi & Yao, Jia & Bai, Bo & Ma, Xiaoming, 2023. "Exploring consumer preferences for electric vehicles based on the random coefficient logit model," Energy, Elsevier, vol. 263(PA).
    19. Sang Byung Seo & Jessica A. Wachter, 2019. "Option Prices in a Model with Stochastic Disaster Risk," Management Science, INFORMS, vol. 65(8), pages 3449-3469, August.
    20. Matteo Böhm & Mirco Nanni & Luca Pappalardo, 2022. "Gross polluters and vehicle emissions reduction," Nature Sustainability, Nature, vol. 5(8), pages 699-707, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7915-:d:687690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.