IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i8p1797-d1372555.html
   My bibliography  Save this article

An Advanced Explainable Belief Rule-Based Framework to Predict the Energy Consumption of Buildings

Author

Listed:
  • Sami Kabir

    (Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, SE-931 87 Skellefteå, Sweden)

  • Mohammad Shahadat Hossain

    (Department of Computer Science & Engineering, University of Chittagong, Chattogram 4331, Bangladesh)

  • Karl Andersson

    (Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, SE-931 87 Skellefteå, Sweden)

Abstract

The prediction of building energy consumption is beneficial to utility companies, users, and facility managers to reduce energy waste. However, due to various drawbacks of prediction algorithms, such as, non-transparent output, ad hoc explanation by post hoc tools, low accuracy, and the inability to deal with data uncertainties, such prediction has limited applicability in this domain. As a result, domain knowledge-based explainability with high accuracy is critical for making energy predictions trustworthy. Motivated by this, we propose an advanced explainable Belief Rule-Based Expert System (eBRBES) with domain knowledge-based explanations for the accurate prediction of energy consumption. We optimize BRBES’s parameters and structure to improve prediction accuracy while dealing with data uncertainties using its inference engine. To predict energy consumption, we take into account floor area, daylight, indoor occupancy, and building heating method. We also describe how a counterfactual output on energy consumption could have been achieved. Furthermore, we propose a novel Belief Rule-Based adaptive Balance Determination (BRBaBD) algorithm for determining the optimal balance between explainability and accuracy. To validate the proposed eBRBES framework, a case study based on Skellefteå, Sweden, is used. BRBaBD results show that our proposed eBRBES framework outperforms state-of-the-art machine learning algorithms in terms of optimal balance between explainability and accuracy by 85.08%.

Suggested Citation

  • Sami Kabir & Mohammad Shahadat Hossain & Karl Andersson, 2024. "An Advanced Explainable Belief Rule-Based Framework to Predict the Energy Consumption of Buildings," Energies, MDPI, vol. 17(8), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1797-:d:1372555
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/8/1797/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/8/1797/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fateme Dinmohammadi & Yuxuan Han & Mahmood Shafiee, 2023. "Predicting Energy Consumption in Residential Buildings Using Advanced Machine Learning Algorithms," Energies, MDPI, vol. 16(9), pages 1-23, April.
    2. Felix Biessmann & Bhaskar Kamble & Rita Streblow, 2023. "An Automated Machine Learning Approach towards Energy Saving Estimates in Public Buildings," Energies, MDPI, vol. 16(19), pages 1-12, September.
    3. Brange, Lisa & Englund, Jessica & Lauenburg, Patrick, 2016. "Prosumers in district heating networks – A Swedish case study," Applied Energy, Elsevier, vol. 164(C), pages 492-500.
    4. Wang, Ying-Ming & Yang, Jian-Bo & Xu, Dong-Ling, 2006. "Environmental impact assessment using the evidential reasoning approach," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1885-1913, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Bin & Ni, Ming-Fang, 2009. "A note on article "The evidential reasoning approach for multiple attribute decision analysis using interval belief degrees"," European Journal of Operational Research, Elsevier, vol. 197(2), pages 809-812, September.
    2. Wirtz, Marco, 2023. "nPro: A web-based planning tool for designing district energy systems and thermal networks," Energy, Elsevier, vol. 268(C).
    3. Min-Hwi Kim & Dong-Won Lee & Deuk-Won Kim & Young-Sub An & Jae-Ho Yun, 2021. "Energy Performance Investigation of Bi-Directional Convergence Energy Prosumers for an Energy Sharing Community," Energies, MDPI, vol. 14(17), pages 1-17, September.
    4. Capone, Martina & Guelpa, Elisa & Verda, Vittorio, 2023. "Potential for supply temperature reduction of existing district heating substations," Energy, Elsevier, vol. 285(C).
    5. J-B Yang & D-L Xu & X Xie & A K Maddulapalli, 2011. "Multicriteria evidential reasoning decision modelling and analysis—prioritizing voices of customer," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1638-1654, September.
    6. C. Y. Ng & K. B. Chuah, 2017. "Environmental Impact Evaluations on Product Design Alternatives Using the Combined Evidential Reasoning with Fuzzy Set," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-25, September.
    7. Chicherin, Stanislav, 2020. "Methodology for analyzing operation data for optimum district heating (DH) system design: Ten-year data of Omsk, Russia," Energy, Elsevier, vol. 211(C).
    8. Marian B. Gorzałczany & Filip Rudziński, 2024. "Energy Consumption Prediction in Residential Buildings—An Accurate and Interpretable Machine Learning Approach Combining Fuzzy Systems with Evolutionary Optimization," Energies, MDPI, vol. 17(13), pages 1-24, July.
    9. Pothitou, Mary & Hanna, Richard F. & Chalvatzis, Konstantinos J., 2016. "Environmental knowledge, pro-environmental behaviour and energy savings in households: An empirical study," Applied Energy, Elsevier, vol. 184(C), pages 1217-1229.
    10. Yang, Guo-liang & Yang, Jian-bo & Liu, Wen-bin & Li, Xiao-xuan, 2013. "Cross-efficiency aggregation in DEA models using the evidential-reasoning approach," European Journal of Operational Research, Elsevier, vol. 231(2), pages 393-404.
    11. Zhou, Zhi-Jie & Hu, Chang-Hua & Xu, Dong-Ling & Chen, Mao-Yin & Zhou, Dong-Hua, 2010. "A model for real-time failure prognosis based on hidden Markov model and belief rule base," European Journal of Operational Research, Elsevier, vol. 207(1), pages 269-283, November.
    12. Pietro Catrini & Tancredi Testasecca & Alessandro Buscemi & Antonio Piacentino, 2022. "Exergoeconomics as a Cost-Accounting Method in Thermal Grids with the Presence of Renewable Energy Producers," Sustainability, MDPI, vol. 14(7), pages 1-27, March.
    13. Donatien Koulla Moulla & David Attipoe & Ernest Mnkandla & Alain Abran, 2024. "Predictive Model of Energy Consumption Using Machine Learning: A Case Study of Residential Buildings in South Africa," Sustainability, MDPI, vol. 16(11), pages 1-18, May.
    14. Suli Zhang & Yiting Chang & Hui Li & Guanghao You, 2024. "Research on Building Energy Consumption Prediction Based on Improved PSO Fusion LSSVM Model," Energies, MDPI, vol. 17(17), pages 1-17, August.
    15. Xiaojiao Qiao & Dan Shi, 2019. "Risk Analysis of Emergency Based on Fuzzy Evidential Reasoning," Complexity, Hindawi, vol. 2019, pages 1-10, November.
    16. Dénarié, A. & Aprile, M. & Motta, M., 2023. "Dynamical modelling and experimental validation of a fast and accurate district heating thermo-hydraulic modular simulation tool," Energy, Elsevier, vol. 282(C).
    17. Lian, Zheng & Zhou, Zhi-Jie & Hu, Chang-Hua & Wang, Jie & Zhang, Chun-Chao & Zhang, Chao-Li, 2024. "A health assessment method with attribute importance modeling for complex systems using belief rule base," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    18. Wirtz, Marco & Kivilip, Lukas & Remmen, Peter & Müller, Dirk, 2020. "5th Generation District Heating: A novel design approach based on mathematical optimization," Applied Energy, Elsevier, vol. 260(C).
    19. Jun Liu & Jian-Bo Yang & Da Ruan & Luis Martinez & Jin Wang, 2008. "Self-tuning of fuzzy belief rule bases for engineering system safety analysis," Annals of Operations Research, Springer, vol. 163(1), pages 143-168, October.
    20. Mitridati, Lesia & Kazempour, Jalal & Pinson, Pierre, 2021. "Design and game-Theoretic analysis of community-Based market mechanisms in heat and electricity systems," Omega, Elsevier, vol. 99(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1797-:d:1372555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.