IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v299y2024ics0360544224011496.html
   My bibliography  Save this article

System-level analysis of atmospheric water extraction with MIL-100 (Fe) for design and optimal site selection using meteorological characteristics

Author

Listed:
  • Kim, Jinsu
  • Jamdade, Shubham
  • Yuan, Yanhui
  • Realff, Matthew J.

Abstract

This study presents a system-level atmospheric water extraction (AWE) analysis using MIL-100 (Fe) as a representative material. This study considers a range of system features, including (i) modeling the isotherm across a wide temperature range based on the experimental data, (ii) conceptualizing process types and their operating conditions, (iii) analyzing the thermodynamics and economics, and (iv) optimizing the system operation under meteorological variations in temperature and humidity through two-stage stochastic programming. The swing capacity analysis revealed that a vacuum pressure below 0.1 bar and a temperature swing degree of 20–30 °C are necessary for feasible MIL-100 (Fe) AWE operation. Energy analysis shows that higher degrees of vacuum with moderate temperature swings result in lower energy consumption, requiring 4.6 and 1.6 MJ kgH2O−1 for thermal and electrical energy consumption. The estimated unit harvesting cost was 0.058 US$ kgH2O−1, with the potential for cost reduction through material and process development. We make contributions in several key areas: (i) facilitating the selection of optimal sites for pilot or commercial process implementation, (ii) offering insights into process design and operation, (iii) identifying and addressing potential bottlenecks for future process development, and (iv) providing a generalized platform for material screenings for comparative analysis.

Suggested Citation

  • Kim, Jinsu & Jamdade, Shubham & Yuan, Yanhui & Realff, Matthew J., 2024. "System-level analysis of atmospheric water extraction with MIL-100 (Fe) for design and optimal site selection using meteorological characteristics," Energy, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224011496
    DOI: 10.1016/j.energy.2024.131376
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224011496
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131376?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Husam A. Almassad & Rada I. Abaza & Lama Siwwan & Bassem Al-Maythalony & Kyle E. Cordova, 2022. "Environmentally adaptive MOF-based device enables continuous self-optimizing atmospheric water harvesting," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Kim, Jinsu & Kim, Jungil & Oh, Hyunmin & Lee, Seokyoung & Lee, In-Beum & Yoon, Young-Seek, 2022. "Techno-economic and environmental impact analysis of tuyere injection of hot reducing gas from low-rank coal gasification in blast furnace," Energy, Elsevier, vol. 241(C).
    3. Kim, Jinsu & Han, Sang Sup & Kim, Jungil & Lee, In-Beum & Oh, Hyunmin & Yoon, Young-Seek, 2023. "Vacuum pressure swing adsorption for efficient off-gas recycling: Techno-economic and CO2 abatement study," Energy, Elsevier, vol. 264(C).
    4. Tashtoush, Bourhan & Alshoubaki, Anas, 2023. "Atmospheric water harvesting: A review of techniques, performance, renewable energy solutions, and feasibility," Energy, Elsevier, vol. 280(C).
    5. Talaat, M.A. & Awad, M.M. & Zeidan, E.B. & Hamed, A.M., 2018. "Solar-powered portable apparatus for extracting water from air using desiccant solution," Renewable Energy, Elsevier, vol. 119(C), pages 662-674.
    6. Zhang, Qiaoxin & Tu, Rang & Liu, Mengdan, 2023. "Performance analyses and optimization studies of desiccant wheel assisted atmospheric water harvesting system under global ambient conditions," Energy, Elsevier, vol. 283(C).
    7. Kane, Aarti & Verma, Vishal & Singh, Bhim, 2017. "Optimization of thermoelectric cooling technology for an active cooling of photovoltaic panel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1295-1305.
    8. Fathy, Mohamed H. & Awad, Mohamed M. & Zeidan, El-Shafei B. & Hamed, Ahmed M., 2020. "Solar powered foldable apparatus for extracting water from atmospheric air," Renewable Energy, Elsevier, vol. 162(C), pages 1462-1489.
    9. Björn Pfeiffelmann & Ali Cemal Benim & Franz Joos, 2021. "Water-Cooled Thermoelectric Generators for Improved Net Output Power: A Review," Energies, MDPI, vol. 14(24), pages 1-29, December.
    10. Tingxian Li & Minqiang Wu & Jiaxing Xu & Ruxue Du & Taisen Yan & Pengfei Wang & Zhaoyuan Bai & Ruzhu Wang & Siqi Wang, 2022. "Simultaneous atmospheric water production and 24-hour power generation enabled by moisture-induced energy harvesting," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Hyunho Kim & Sameer R. Rao & Eugene A. Kapustin & Lin Zhao & Sungwoo Yang & Omar M. Yaghi & Evelyn N. Wang, 2018. "Adsorption-based atmospheric water harvesting device for arid climates," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    12. Quirin Schiermeier & Jeff Tollefson & Tony Scully & Alexandra Witze & Oliver Morton, 2008. "Energy alternatives: Electricity without carbon," Nature, Nature, vol. 454(7206), pages 816-823, August.
    13. Tayerani Charmchi, Amir Saman & Ifaei, Pouya & Yoo, ChangKyoo, 2021. "Smart supply-side management of optimal hydro reservoirs using the water/energy nexus concept: A hydropower pinch analysis," Applied Energy, Elsevier, vol. 281(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhihui & Deng, Fangfang & Yang, Xinge & Shao, Zhao & Du, Shuai & Wang, Ruzhu, 2024. "Highly efficient portable atmospheric water harvester with integrated structure design for high yield water production," Energy, Elsevier, vol. 293(C).
    2. Mohammed Sanjid Thavalengal & Muhammad Ahmad Jamil & Muhammad Mehroz & Ben Bin Xu & Haseeb Yaqoob & Muhammad Sultan & Nida Imtiaz & Muhammad Wakil Shahzad, 2023. "Progress and Prospects of Air Water Harvesting System for Remote Areas: A Comprehensive Review," Energies, MDPI, vol. 16(6), pages 1-27, March.
    3. Tashtoush, Bourhan & Alshoubaki, Anas, 2023. "Atmospheric water harvesting: A review of techniques, performance, renewable energy solutions, and feasibility," Energy, Elsevier, vol. 280(C).
    4. Xinge Yang & Zhihui Chen & Chengjie Xiang & He Shan & Ruzhu Wang, 2024. "Enhanced continuous atmospheric water harvesting with scalable hygroscopic gel driven by natural sunlight and wind," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Zhou, Yuzhou & Zhao, Jiexing & Zhai, Qiaozhu, 2021. "100% renewable energy: A multi-stage robust scheduling approach for cascade hydropower system with wind and photovoltaic power," Applied Energy, Elsevier, vol. 301(C).
    6. Shiyu Zhou & Xiaoqian Wang & Hanbing Jia & Jiying Liu, 2024. "Optimal Design of Air Treatment for an Adsorption Water-Harvesting System," Sustainability, MDPI, vol. 16(14), pages 1-19, July.
    7. Ifaei, Pouya & Tayerani Charmchi, Amir Saman & Loy-Benitez, Jorge & Yang, Rebecca Jing & Yoo, ChangKyoo, 2022. "A data-driven analytical roadmap to a sustainable 2030 in South Korea based on optimal renewable microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Liu, Zhan & Liu, Zihui & Guo, Junfei & Wang, Fan & Yang, Xiaohu & Yan, Jinyue, 2022. "Innovative ladder-shaped fin design on a latent heat storage device for waste heat recovery," Applied Energy, Elsevier, vol. 321(C).
    9. Chao, Jingwei & Xu, Jiaxing & Yan, Taisen & Xiang, Shizhao & Bai, Zhaoyuan & Wang, Ruzhu & Li, Tingxian, 2023. "Performance analysis of sorption thermal battery for high-density cold energy storage enabled by novel tube-free evaporator," Energy, Elsevier, vol. 273(C).
    10. Saxena, Ashish & Deshmukh, Sandip & Nirali, Somanath & Wani, Saurabh, 2018. "Laboratory based Experimental Investigation of Photovoltaic (PV) Thermo-control with Water and its Proposed Real-time Implementation," Renewable Energy, Elsevier, vol. 115(C), pages 128-138.
    11. Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
    12. Bhutto, Abdul Waheed & Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2012. "Greener energy: Issues and challenges for Pakistan—Solar energy prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2762-2780.
    13. Scherer, Laura & Pfister, Stephan, 2016. "Global water footprint assessment of hydropower," Renewable Energy, Elsevier, vol. 99(C), pages 711-720.
    14. Chen, Xiuzhi & Liu, Chang & van Oel, Pieter & Mergia Mekonnen, Mesfin & Thorp, Kelly R. & Yin, Tuo & Wang, Jinyan & Muhammad, Tahir & Li, Yunkai, 2022. "Water and carbon risks within hydropower development on national scale," Applied Energy, Elsevier, vol. 325(C).
    15. Karmakar, Avishek & Prabakaran, Vivekh & Zhao, Dan & Chua, Kian Jon, 2020. "A review of metal-organic frameworks (MOFs) as energy-efficient desiccants for adsorption driven heat-transformation applications," Applied Energy, Elsevier, vol. 269(C).
    16. Husam S. Al-Duais & Muhammad Azzam Ismail & Zakaria Alcheikh Mahmoud Awad & Karam M. Al-Obaidi, 2022. "Performance Evaluation of Solar-Powered Atmospheric Water Harvesting Using Different Glazing Materials in the Tropical Built Environment: An Experimental Study," Energies, MDPI, vol. 15(9), pages 1-19, April.
    17. Ge, Lurong & Feng, Yaohui & Wu, Jiarong & Wang, Ruzhu & Ge, Tianshu, 2024. "Performance evaluation of MIL-101(Cr) based desiccant-coated heat exchangers for efficient dehumidification," Energy, Elsevier, vol. 289(C).
    18. Bevilacqua, Piero & Bruno, Roberto & Arcuri, Natale, 2020. "Comparing the performances of different cooling strategies to increase photovoltaic electric performance in different meteorological conditions," Energy, Elsevier, vol. 195(C).
    19. Tamerlan Srymbetov & Albina Jetybayeva & Dinara Dikhanbayeva & Luis Rojas‐Solórzano, 2023. "Mapping non‐conventional atmospheric drinking‐water harvesting opportunities in Central Eurasia: The case of Kazakhstan," Natural Resources Forum, Blackwell Publishing, vol. 47(1), pages 87-113, February.
    20. Nicholas Gurieff & Donna Green & Ilpo Koskinen & Mathew Lipson & Mark Baldry & Andrew Maddocks & Chris Menictas & Jens Noack & Behdad Moghtaderi & Elham Doroodchi, 2020. "Healthy Power: Reimagining Hospitals as Sustainable Energy Hubs," Sustainability, MDPI, vol. 12(20), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224011496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.