IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-03162-7.html
   My bibliography  Save this article

Adsorption-based atmospheric water harvesting device for arid climates

Author

Listed:
  • Hyunho Kim

    (Massachusetts Institute of Technology)

  • Sameer R. Rao

    (Massachusetts Institute of Technology)

  • Eugene A. Kapustin

    (University of California–Berkeley
    Lawrence Berkeley National Laboratory)

  • Lin Zhao

    (Massachusetts Institute of Technology)

  • Sungwoo Yang

    (Massachusetts Institute of Technology)

  • Omar M. Yaghi

    (University of California–Berkeley
    Lawrence Berkeley National Laboratory
    King Abdulaziz City for Science and Technology (KACST))

  • Evelyn N. Wang

    (Massachusetts Institute of Technology)

Abstract

Water scarcity is a particularly severe challenge in arid and desert climates. While a substantial amount of water is present in the form of vapour in the atmosphere, harvesting this water by state-of-the-art dewing technology can be extremely energy intensive and impractical, particularly when the relative humidity (RH) is low (i.e., below ~40% RH). In contrast, atmospheric water generators that utilise sorbents enable capture of vapour at low RH conditions and can be driven by the abundant source of solar-thermal energy with higher efficiency. Here, we demonstrate an air-cooled sorbent-based atmospheric water harvesting device using the metal−organic framework (MOF)-801 [Zr6O4(OH)4(fumarate)6] operating in an exceptionally arid climate (10–40% RH) and sub-zero dew points (Tempe, Arizona, USA) with a thermal efficiency (solar input to water conversion) of ~14%. We predict that this device delivered over 0.25 L of water per kg of MOF for a single daily cycle.

Suggested Citation

  • Hyunho Kim & Sameer R. Rao & Eugene A. Kapustin & Lin Zhao & Sungwoo Yang & Omar M. Yaghi & Evelyn N. Wang, 2018. "Adsorption-based atmospheric water harvesting device for arid climates," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03162-7
    DOI: 10.1038/s41467-018-03162-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-03162-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-03162-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03162-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.