IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v297y2024ics0360544224010995.html
   My bibliography  Save this article

High-efficiency control strategies of a hydrogen turbo-expander for a 5 t/d hydrogen liquefier

Author

Listed:
  • Zhou, Kaimiao
  • Zhao, Kang
  • Chen, Liang
  • Zhang, Ze
  • Deng, Kunyu
  • Chen, Shuangtao
  • Hou, Yu

Abstract

Liquid hydrogen plays a crucial role in the large-scale storage and long-distance transportation of hydrogen energy. Effectively controlling hydrogen turbo-expanders is an important strategy for reducing energy consumption during liquefaction process. This study conducts both experimental and numerical investigations on a hydrogen turbo-expander within a 5 t/d hydrogen liquefaction system. A CFD model is developed to predict the performance of hydrogen turbo-expanders, which is then validated against experimental data. The numerical predictions of isotropic efficiency closely match experimental results, with a maximum deviation of 10 %. Throughout the cooling-down process, the efficiency of the hydrogen turbo-expander varies significantly, indicating a strong dependence on the characteristic ratio. Consequently, an optimal characteristic ratio method is proposed to maintain the hydrogen turbo-expander at peak efficiency. Compared to traditional control methods based on fixed brake pressure, the proposed approach achieves a maximum efficiency enhancement of 23.8 %. At the optimal characteristic ratio, the rotational speed can be maintained at the design level by adjusting brake pressure, which remains below the design value during the cooling-down phase. This investigation presents an effective method for optimizing the control of turbo-expanders in hydrogen liquefaction systems.

Suggested Citation

  • Zhou, Kaimiao & Zhao, Kang & Chen, Liang & Zhang, Ze & Deng, Kunyu & Chen, Shuangtao & Hou, Yu, 2024. "High-efficiency control strategies of a hydrogen turbo-expander for a 5 t/d hydrogen liquefier," Energy, Elsevier, vol. 297(C).
  • Handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010995
    DOI: 10.1016/j.energy.2024.131326
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224010995
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131326?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Tongtong & Uratani, Joao & Huang, Yixuan & Xu, Lejin & Griffiths, Steve & Ding, Yulong, 2023. "Hydrogen liquefaction and storage: Recent progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    2. Teng, Junjie & Wang, Kai & Zhu, Shaolong & Bao, Shiran & Zhi, Xiaoqin & Zhang, Xiaobin & Qiu, Limin, 2023. "Comparative study on thermodynamic performance of hydrogen liquefaction processes with various ortho-para hydrogen conversion methods," Energy, Elsevier, vol. 271(C).
    3. Faramarzi, Saman & Gharanli, Sajjad & Ramazanzade Mohammadi, Mohsen & Rahimtabar, Amin & J. Chamkha, Ali, 2023. "Energy, exergy, and economic analysis of an innovative hydrogen liquefaction cycle integrated into an absorption refrigeration system and geothermal energy," Energy, Elsevier, vol. 282(C).
    4. Chen, Shuhang & Qiu, Changxu & Shen, Yunwei & Tao, Xuan & Gan, Zhihua, 2024. "Thermodynamic and economic analysis of new coupling processes with large-scale hydrogen liquefaction process and liquid air energy storage," Energy, Elsevier, vol. 286(C).
    5. Kumar, Manoj & Behera, Suraj K. & Kumar, Amitesh & Sahoo, Ranjit K., 2019. "Numerical and experimental investigation to visualize the fluid flow and thermal characteristics of a cryogenic turboexpander," Energy, Elsevier, vol. 189(C).
    6. Li, Xiaoming & Lv, Cui & Yang, Shaoqi & Li, Jian & Deng, Bicai & Li, Qing, 2019. "Preliminary design and performance analysis of a radial inflow turbine for a large-scale helium cryogenic system," Energy, Elsevier, vol. 167(C), pages 106-116.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Guoyi & Zhu, Shaolong & Wang, Kai & Wang, Weibo & Hu, Junhui & Hu, Yun & Zhi, Xiaoqin & Qiu, Limin, 2023. "Numerical study on the dynamic process of reciprocating liquid hydrogen pumps for hydrogen refueling stations," Energy, Elsevier, vol. 281(C).
    2. Chen, Shuhang & Qiu, Changxu & Shen, Yunwei & Tao, Xuan & Gan, Zhihua, 2024. "Thermodynamic and economic analysis of new coupling processes with large-scale hydrogen liquefaction process and liquid air energy storage," Energy, Elsevier, vol. 286(C).
    3. Meng, Yang & Zhang, Yicheng & Wang, Junxin & Chen, Shuangtao & Hou, Yu & Chen, Liang, 2023. "Performance optimization of turboexpander-compressors for energy recovery in small air-separation plants," Energy, Elsevier, vol. 271(C).
    4. Tang, Yuanyou & Wang, Yang & Long, Wuqiang & Xiao, Ge & Wang, Yongjian & Li, Weixing, 2023. "Analysis and enhancement of methanol reformer performance for online reforming based on waste heat recovery of methanol-diesel dual direct injection engine," Energy, Elsevier, vol. 283(C).
    5. Muhammad, Hafiz Ali & Naseem, Mujahid & Kim, Jonghwan & Kim, Sundong & Choi, Yoonseok & Lee, Young Duk, 2024. "Solar hydrogen production: Technoeconomic analysis of a concentrated solar-powered high-temperature electrolysis system," Energy, Elsevier, vol. 298(C).
    6. Szturgulewski, Kacper & Głuch, Jerzy & Drosińska-Komor, Marta & Ziółkowski, Paweł & Gardzilewicz, Andrzej & Brzezińska-Gołębiewska, Katarzyna, 2024. "Hybrid geothermal-fossil power cycle analysis in a Polish setting with a focus on off-design performance and CO2 emissions reductions," Energy, Elsevier, vol. 299(C).
    7. Zhang, Chengbin & Li, Deming & Mao, Changjun & Liu, Haiyang & Chen, Yongping, 2024. "Thermodynamic analysis of liquid air energy storage system integrating LNG cold energy," Energy, Elsevier, vol. 299(C).
    8. Liu, Changxing & Zou, Zhengping & Xu, Pengcheng & Wang, Yifan, 2024. "Development of helium turbine loss model based on knowledge transfer with neural network and its application on aerodynamic design," Energy, Elsevier, vol. 297(C).
    9. Zhang, Chengbin & Wu, Zhe & Wang, Jiadian & Ding, Ce & Gao, Tieyu & Chen, Yongping, 2023. "Thermodynamic performance of a radial-inflow turbine for ocean thermal energy conversion using ammonia," Renewable Energy, Elsevier, vol. 202(C), pages 907-920.
    10. Wang, Zhiqi & Xie, Baoqi & Xia, Xiaoxia & Luo, Lan & Yang, Huya & Li, Xin, 2023. "Entropy production analysis of a radial inflow turbine with variable inlet guide vane for ORC application," Energy, Elsevier, vol. 265(C).
    11. Mylena Vieira Pinto Menezes & Icaro Figueiredo Vilasboas & Julio Augusto Mendes da Silva, 2022. "Liquid Air Energy Storage System (LAES) Assisted by Cryogenic Air Rankine Cycle (ARC)," Energies, MDPI, vol. 15(8), pages 1-16, April.
    12. Wang, Chenghong & Sun, Daming & Shen, Qie & Shen, Keyi & Duan, Yuanyuan, 2024. "Optimization of coalbed methane liquefaction process based on parallel nitrogen reverse Brayton cycle under varying methane contents and liquefaction ratios," Energy, Elsevier, vol. 293(C).
    13. Zheng, Shanshan & Hai, Qing & Zhou, Xiao & Stanford, Russell J., 2024. "A novel multi-generation system for sustainable power, heating, cooling, freshwater, and methane production: Thermodynamic, economic, and environmental analysis," Energy, Elsevier, vol. 290(C).
    14. Vladimir Kindra & Igor Maksimov & Maksim Oparin & Olga Zlyvko & Andrey Rogalev, 2023. "Hydrogen Technologies: A Critical Review and Feasibility Study," Energies, MDPI, vol. 16(14), pages 1-18, July.
    15. Yan, Yan & Zhang, Jiaqiao & Li, Guangzhao & Zhou, Weihao & Ni, Zhonghua, 2024. "Review on linerless type V cryo-compressed hydrogen storage vessels: Resin toughening and hydrogen-barrier properties control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    16. Wild, Phillip & Skoufa, Lucas & Spencer, Nancy, 2024. "Renewable hydrogen requirements and impacts for network balancing: A Queensland case study," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 452-469.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010995. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.