IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v297y2024ics0360544224010910.html
   My bibliography  Save this article

Comparison of algorithms for heat load prediction of buildings

Author

Listed:
  • Wang, Yongjie
  • Zhan, Changhong
  • Li, Guanghao
  • Ren, Shaochen

Abstract

Achieving precision in the prediction of buildings' dynamic heat load is crucial for the advancement of smart heating systems. This research highlights the urgent need to enhance the accuracy of models predicting dynamic heat load. Through literature review, distinguished machine learning and regression algorithms were chosen to formulate prediction models. These models employ a data time-step adaptive strategy, a physics-guided loss function, and fundamental principles of heat transfer. Optimization algorithms of a mathematical nature were utilized to fine-tune the parameters and the framework of long short-term memory (LSTM) and multi-layer perceptron (MLP) models. An analytical comparison was undertaken between physics-guided models and those not guided by physics. Principal conclusions are: 1) Pelican optimization algorithm (POA)-LSTM model emerges as superior in heat load prediction accuracy of an office building, with percentage errors for actual and simulated datasets ranging from −6.7 % to 5.8 % and −5.2 %–4.5 %, respectively, and the mean absolute percentage error (MAPE) standing at 2.3 % and 1.3 %. 2) The linear regression model exhibits the lowest precision, with a MAPE of 17.5 % and 4.0 % for the 7-day prediction results in the actual and simulated datasets, respectively. These findings provide support for improving heat load prediction in heating systems.

Suggested Citation

  • Wang, Yongjie & Zhan, Changhong & Li, Guanghao & Ren, Shaochen, 2024. "Comparison of algorithms for heat load prediction of buildings," Energy, Elsevier, vol. 297(C).
  • Handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010910
    DOI: 10.1016/j.energy.2024.131318
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224010910
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131318?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Yabin & Wang, Jiangyu & Chen, Huanxin & Li, Guannan & Liu, Jiangyan & Xu, Chengliang & Huang, Ronggeng & Huang, Yao, 2018. "Machine learning-based thermal response time ahead energy demand prediction for building heating systems," Applied Energy, Elsevier, vol. 221(C), pages 16-27.
    2. Yang, Yiran & Li, Gang & Luo, Tao & Al-Bahrani, Mohammed & Al-Ammar, Essam A. & Sillanpaa, Mika & Ali, Shafaqat & Leng, Xiujuan, 2023. "The innovative optimization techniques for forecasting the energy consumption of buildings using the shuffled frog leaping algorithm and different neural networks," Energy, Elsevier, vol. 268(C).
    3. Lumbreras, Mikel & Garay-Martinez, Roberto & Arregi, Beñat & Martin-Escudero, Koldobika & Diarce, Gonzalo & Raud, Margus & Hagu, Indrek, 2022. "Data driven model for heat load prediction in buildings connected to District Heating by using smart heat meters," Energy, Elsevier, vol. 239(PD).
    4. Somu, Nivethitha & M R, Gauthama Raman & Ramamritham, Krithi, 2020. "A hybrid model for building energy consumption forecasting using long short term memory networks," Applied Energy, Elsevier, vol. 261(C).
    5. Sun, Chunhua & Chen, Jiali & Cao, Shanshan & Gao, Xiaoyu & Xia, Guoqiang & Qi, Chengying & Wu, Xiangdong, 2021. "A dynamic control strategy of district heating substations based on online prediction and indoor temperature feedback," Energy, Elsevier, vol. 235(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qing Yin & Chunmiao Han & Ailin Li & Xiao Liu & Ying Liu, 2024. "A Review of Research on Building Energy Consumption Prediction Models Based on Artificial Neural Networks," Sustainability, MDPI, vol. 16(17), pages 1-30, September.
    2. Liu, Zhikai & Zhang, Huan & Wang, Yaran & Song, Zixu & You, Shijun & Jiang, Yan & Wu, Zhangxiang, 2022. "A thermal-hydraulic coupled simulation approach for the temperature and flow rate control strategy evaluation of the multi-room radiator heating system," Energy, Elsevier, vol. 246(C).
    3. Razak Olu-Ajayi & Hafiz Alaka & Hakeem Owolabi & Lukman Akanbi & Sikiru Ganiyu, 2023. "Data-Driven Tools for Building Energy Consumption Prediction: A Review," Energies, MDPI, vol. 16(6), pages 1-20, March.
    4. Fath U Min Ullah & Noman Khan & Tanveer Hussain & Mi Young Lee & Sung Wook Baik, 2021. "Diving Deep into Short-Term Electricity Load Forecasting: Comparative Analysis and a Novel Framework," Mathematics, MDPI, vol. 9(6), pages 1-22, March.
    5. Amal A. Al-Shargabi & Abdulbasit Almhafdy & Dina M. Ibrahim & Manal Alghieth & Francisco Chiclana, 2021. "Tuning Deep Neural Networks for Predicting Energy Consumption in Arid Climate Based on Buildings Characteristics," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
    6. Arash Mohammadi Fallah & Ehsan Ghafourian & Ladan Shahzamani Sichani & Hossein Ghafourian & Behdad Arandian & Moncef L. Nehdi, 2023. "Novel Neural Network Optimized by Electrostatic Discharge Algorithm for Modification of Buildings Energy Performance," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
    7. Ijaz Ul Haq & Amin Ullah & Samee Ullah Khan & Noman Khan & Mi Young Lee & Seungmin Rho & Sung Wook Baik, 2021. "Sequential Learning-Based Energy Consumption Prediction Model for Residential and Commercial Sectors," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    8. Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    9. Fan, Cheng & Sun, Yongjun & Xiao, Fu & Ma, Jie & Lee, Dasheng & Wang, Jiayuan & Tseng, Yen Chieh, 2020. "Statistical investigations of transfer learning-based methodology for short-term building energy predictions," Applied Energy, Elsevier, vol. 262(C).
    10. Fang, Lei & He, Bin, 2023. "A deep learning framework using multi-feature fusion recurrent neural networks for energy consumption forecasting," Applied Energy, Elsevier, vol. 348(C).
    11. Muideen Adegoke & Alaka Hafiz & Saheed Ajayi & Razak Olu-Ajayi, 2022. "Application of Multilayer Extreme Learning Machine for Efficient Building Energy Prediction," Energies, MDPI, vol. 15(24), pages 1-21, December.
    12. Tong Lei & Zuoqin Qian & Jie Ren, 2023. "Performance Evaluation of LiBr-H 2 O and LiCl-H 2 O Working Pairs in Compression-Assisted Double-Effect Absorption Refrigeration Systems for Utilization of Low-Temperature Heat Sources," Energies, MDPI, vol. 16(16), pages 1-19, August.
    13. Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
    14. Md Tariqul Islam & M. J. Hossain, 2023. "Artificial Intelligence for Hosting Capacity Analysis: A Systematic Literature Review," Energies, MDPI, vol. 16(4), pages 1-33, February.
    15. Yuwen You & Zhonghua Wang & Zhihao Liu & Chunmei Guo & Bin Yang, 2024. "Load Prediction of Regional Heat Exchange Station Based on Fuzzy Clustering Based on Fourier Distance and Convolutional Neural Network–Bidirectional Long Short-Term Memory Network," Energies, MDPI, vol. 17(16), pages 1-19, August.
    16. Zhong, Wei & Huang, Wei & Lin, Xiaojie & Li, Zhongbo & Zhou, Yi, 2020. "Research on data-driven identification and prediction of heat response time of urban centralized heating system," Energy, Elsevier, vol. 212(C).
    17. Cocco Mariani, Viviana & Hennings Och, Stephan & dos Santos Coelho, Leandro & Domingues, Eric, 2019. "Pressure prediction of a spark ignition single cylinder engine using optimized extreme learning machine models," Applied Energy, Elsevier, vol. 249(C), pages 204-221.
    18. Yuchun Li & Yinghua Han & Jinkuan Wang & Qiang Zhao, 2018. "A MBCRF Algorithm Based on Ensemble Learning for Building Demand Response Considering the Thermal Comfort," Energies, MDPI, vol. 11(12), pages 1-20, December.
    19. Ling, Jihong & Zhang, Bingyang & Dai, Na & Xing, Jincheng, 2023. "Coupling input feature construction methods and machine learning algorithms for hourly secondary supply temperature prediction," Energy, Elsevier, vol. 278(C).
    20. Sun, Chunhua & Liu, Yiting & Cao, Shanshan & Chen, Jiali & Xia, Guoqiang & Wu, Xiangdong, 2022. "Identification of control regularity of heating stations based on cross-correlation function dynamic time delay method," Energy, Elsevier, vol. 246(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.