IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v304y2024ics0360544224019947.html
   My bibliography  Save this article

A refined classification method of heat customers to improve inter-household thermal balance intelligent control and regulation

Author

Listed:
  • Sun, Chunhua
  • Yan, Hao
  • Yuan, Lingyu
  • Cao, Shanshan
  • Ma, Weichi
  • Suo, Chenyu
  • Qi, Chengying
  • Wu, Xiangdong

Abstract

Hydraulic imbalance in district heating systems (DHSs) especially in the secondary pipe network hinders the improvement of system energy efficiency. To improve inter-household thermal balance on the secondary side, this paper proposes a refined classification and intelligent regulation method for heat customers. Firstly, an intelligent balancing system is proposed with the smart valves installed at heat customer's thermal entrance. Then, the refined method classifies the heat customers based on room comprehensive thermal characteristic coefficient. The regulation periods and target return temperature predictive models are determined for each customer type to achieve balance regulation. Finally, the proposed intelligent balance system was applied to a practical DHS secondary pipe network to verify its balance effect. After the regulation, indoor temperature non-uniformity coefficient for each type of heat customer decreased by 15 %; while the return water temperature dispersion reduced by 8 %–18 %. This led to a significant improvement in hydraulic and thermal balance among heat customers, resulting in a 6.2 % heat-saving rate. The application provides a reference for inter-household thermal balance regulation in scenarios where indoor temperature loggers are limited within similar secondary pipe network of DHSs.

Suggested Citation

  • Sun, Chunhua & Yan, Hao & Yuan, Lingyu & Cao, Shanshan & Ma, Weichi & Suo, Chenyu & Qi, Chengying & Wu, Xiangdong, 2024. "A refined classification method of heat customers to improve inter-household thermal balance intelligent control and regulation," Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224019947
    DOI: 10.1016/j.energy.2024.132220
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224019947
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132220?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Chunhua & Yuan, Lingyu & Chen, Yun & Cao, Shanshan & Xia, Guoqiang & Qi, Chengying & Wu, Xiangdong, 2023. "An intelligent control and regulation strategy aiming at building level heating balance in district heating system," Energy, Elsevier, vol. 278(PB).
    2. Wang, Chao & Du, Yuyan & Li, Hailong & Wallin, Fredrik & Min, Geyong, 2019. "New methods for clustering district heating users based on consumption patterns," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Jie, Pengfei & Tian, Zhe & Yuan, Shanshan & Zhu, Neng, 2012. "Modeling the dynamic characteristics of a district heating network," Energy, Elsevier, vol. 39(1), pages 126-134.
    4. Sun, Chunhua & Liu, Yiting & Cao, Shanshan & Chen, Jiali & Xia, Guoqiang & Wu, Xiangdong, 2022. "Identification of control regularity of heating stations based on cross-correlation function dynamic time delay method," Energy, Elsevier, vol. 246(C).
    5. Guo, Yabin & Wang, Jiangyu & Chen, Huanxin & Li, Guannan & Liu, Jiangyan & Xu, Chengliang & Huang, Ronggeng & Huang, Yao, 2018. "Machine learning-based thermal response time ahead energy demand prediction for building heating systems," Applied Energy, Elsevier, vol. 221(C), pages 16-27.
    6. Che, Zichang & Sun, Jingchao & Na, Hongming & Yuan, Yuxing & Qiu, Ziyang & Du, Tao, 2023. "A novel method for intelligent heating: On-demand optimized regulation of hydraulic balance for secondary networks," Energy, Elsevier, vol. 282(C).
    7. Sun, Chunhua & Chen, Jiali & Cao, Shanshan & Gao, Xiaoyu & Xia, Guoqiang & Qi, Chengying & Wu, Xiangdong, 2021. "A dynamic control strategy of district heating substations based on online prediction and indoor temperature feedback," Energy, Elsevier, vol. 235(C).
    8. Jing Zhao & Yu Shan, 2019. "An Influencing Parameters Analysis of District Heating Network Time Delays Based on the CFD Method," Energies, MDPI, vol. 12(7), pages 1-19, April.
    9. Ashfaq, Asad & Ianakiev, Anton, 2018. "Investigation of hydraulic imbalance for converting existing boiler based buildings to low temperature district heating," Energy, Elsevier, vol. 160(C), pages 200-212.
    10. Zhong, Wei & Huang, Wei & Lin, Xiaojie & Li, Zhongbo & Zhou, Yi, 2020. "Research on data-driven identification and prediction of heat response time of urban centralized heating system," Energy, Elsevier, vol. 212(C).
    11. Salo, Sonja & Jokisalo, Juha & Syri, Sanna & Kosonen, Risto, 2019. "Individual temperature control on demand response in a district heated office building in Finland," Energy, Elsevier, vol. 180(C), pages 946-954.
    12. Liu, Zhikai & Zhang, Huan & Wang, Yaran & Song, Zixu & You, Shijun & Jiang, Yan & Wu, Zhangxiang, 2022. "A thermal-hydraulic coupled simulation approach for the temperature and flow rate control strategy evaluation of the multi-room radiator heating system," Energy, Elsevier, vol. 246(C).
    13. Yuan, Jianjuan & Huang, Ke & Lu, Shilei & Zhang, Ji & Han, Zhao & Zhou, Zhihua, 2022. "Analysis of influencing factors on heat consumption of large residential buildings with different occupancy rates-Tianjin case study," Energy, Elsevier, vol. 238(PC).
    14. Sartor, K. & Dewalef, P., 2017. "Experimental validation of heat transport modelling in district heating networks," Energy, Elsevier, vol. 137(C), pages 961-968.
    15. Liu, Guoqiang & Zhou, Xuan & Yan, Junwei & Yan, Gang, 2021. "A temperature and time-sharing dynamic control approach for space heating of buildings in district heating system," Energy, Elsevier, vol. 221(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Chunhua & Liu, Yiting & Cao, Shanshan & Chen, Jiali & Xia, Guoqiang & Wu, Xiangdong, 2022. "Identification of control regularity of heating stations based on cross-correlation function dynamic time delay method," Energy, Elsevier, vol. 246(C).
    2. Zhong, Wei & Feng, Encheng & Lin, Xiaojie & Xie, Jinfang, 2022. "Research on data-driven operation control of secondary loop of district heating system," Energy, Elsevier, vol. 239(PB).
    3. Sun, Chunhua & Yan, Hao & Cao, Shanshan & Xia, Guoqiang & Liu, Yanan & Wu, Xiangdong, 2024. "A control strategy considering buildings’ thermal characteristics to mitigate heat supply-demand mismatches in district heating systems," Energy, Elsevier, vol. 307(C).
    4. Guo, Chengke & Zhang, Ji & Yuan, Han & Yuan, Yonggong & Wang, Haifeng & Mei, Ning, 2024. "Informer-based model predictive control framework considering group controlled hydraulic balance model to improve the precision of client heat load control in district heating system," Applied Energy, Elsevier, vol. 373(C).
    5. Wang, Yanmin & Li, Zhiwei & Liu, Junjie & Pei, Mingzhe & Zhao, Yan & Lu, Xuan, 2023. "Data-driven analysis and prediction of indoor characteristic temperature in district heating systems," Energy, Elsevier, vol. 282(C).
    6. Wang, Yang & Zhang, Shanhong & Chow, David & Kuckelkorn, Jens M., 2021. "Evaluation and optimization of district energy network performance: Present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    7. Zhong, Wei & Huang, Wei & Lin, Xiaojie & Li, Zhongbo & Zhou, Yi, 2020. "Research on data-driven identification and prediction of heat response time of urban centralized heating system," Energy, Elsevier, vol. 212(C).
    8. Xie, Zichan & Wang, Haichao & Hua, Pengmin & Lahdelma, Risto, 2023. "Discrete event simulation for dynamic thermal modelling of district heating pipe," Energy, Elsevier, vol. 285(C).
    9. Liu, Zhikai & Zhang, Huan & Wang, Yaran & You, Shijun & Dai, Ting & Jiang, Yan, 2024. "Evaluation of the controllability of multi-family building with radiator heating systems: A frequency domain approach," Energy, Elsevier, vol. 294(C).
    10. Kuntuarova, Saltanat & Licklederer, Thomas & Huynh, Thanh & Zinsmeister, Daniel & Hamacher, Thomas & Perić, Vedran, 2024. "Design and simulation of district heating networks: A review of modeling approaches and tools," Energy, Elsevier, vol. 305(C).
    11. Wang, Yongjie & Zhan, Changhong & Li, Guanghao & Ren, Shaochen, 2024. "Comparison of algorithms for heat load prediction of buildings," Energy, Elsevier, vol. 297(C).
    12. Nielsen, Tore Bach & Lund, Henrik & Østergaard, Poul Alberg & Duic, Neven & Mathiesen, Brian Vad, 2021. "Perspectives on energy efficiency and smart energy systems from the 5th SESAAU2019 conference," Energy, Elsevier, vol. 216(C).
    13. Jiang, Mengting & Speetjens, Michel & Rindt, Camilo & Smeulders, David, 2023. "A data-based reduced-order model for dynamic simulation and control of district-heating networks," Applied Energy, Elsevier, vol. 340(C).
    14. Sun, Chunhua & Yuan, Lingyu & Chen, Yun & Cao, Shanshan & Xia, Guoqiang & Qi, Chengying & Wu, Xiangdong, 2023. "An intelligent control and regulation strategy aiming at building level heating balance in district heating system," Energy, Elsevier, vol. 278(PB).
    15. Capone, Martina & Guelpa, Elisa & Verda, Vittorio, 2021. "Accounting for pipeline thermal capacity in district heating simulations," Energy, Elsevier, vol. 219(C).
    16. Che, Zichang & Sun, Jingchao & Na, Hongming & Yuan, Yuxing & Qiu, Ziyang & Du, Tao, 2023. "A novel method for intelligent heating: On-demand optimized regulation of hydraulic balance for secondary networks," Energy, Elsevier, vol. 282(C).
    17. Wang, Yanmin & Li, Zhiwei & Liu, Junjie & Lu, Xuan & Zhao, Laifu & Zhao, Yan & Feng, Yongtao, 2024. "Analyzing daily change patterns of indoor temperature in district heating systems: A clustering and regression approach," Applied Energy, Elsevier, vol. 358(C).
    18. Hatef Hajian & Raimo Simson & Jarek Kurnitski, 2022. "Heating Sizing Power Reduction in Buildings Connected to District Heating with Dynamically Controlled DHW Setback and Flow Limiters," Energies, MDPI, vol. 15(14), pages 1-18, July.
    19. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Lin, Zhongwei & Fang, Fang & Chen, Qun, 2021. "Optimal operation of integrated electricity and heat system: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224019947. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.