Diving Deep into Short-Term Electricity Load Forecasting: Comparative Analysis and a Novel Framework
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Somu, Nivethitha & M R, Gauthama Raman & Ramamritham, Krithi, 2020. "A hybrid model for building energy consumption forecasting using long short term memory networks," Applied Energy, Elsevier, vol. 261(C).
- Yao Zhang & Fan Lin & Ke Wang, 2020. "Robustness of Short-Term Wind Power Forecasting against False Data Injection Attacks," Energies, MDPI, vol. 13(15), pages 1-21, July.
- Hu, Huanling & Wang, Lin & Lv, Sheng-Xiang, 2020. "Forecasting energy consumption and wind power generation using deep echo state network," Renewable Energy, Elsevier, vol. 154(C), pages 598-613.
- Kim, Tae-Young & Cho, Sung-Bae, 2019. "Predicting residential energy consumption using CNN-LSTM neural networks," Energy, Elsevier, vol. 182(C), pages 72-81.
- Shaktipada Bhuniya & Biswajit Sarkar & Sarla Pareek, 2019. "Multi-Product Production System with the Reduced Failure Rate and the Optimum Energy Consumption under Variable Demand," Mathematics, MDPI, vol. 7(5), pages 1-20, May.
- Haben, Stephen & Ward, Jonathan & Vukadinovic Greetham, Danica & Singleton, Colin & Grindrod, Peter, 2014. "A new error measure for forecasts of household-level, high resolution electrical energy consumption," International Journal of Forecasting, Elsevier, vol. 30(2), pages 246-256.
- Fumo, Nelson & Rafe Biswas, M.A., 2015. "Regression analysis for prediction of residential energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 332-343.
- Guo, Yabin & Wang, Jiangyu & Chen, Huanxin & Li, Guannan & Liu, Jiangyan & Xu, Chengliang & Huang, Ronggeng & Huang, Yao, 2018. "Machine learning-based thermal response time ahead energy demand prediction for building heating systems," Applied Energy, Elsevier, vol. 221(C), pages 16-27.
- Cedric De Cauwer & Joeri Van Mierlo & Thierry Coosemans, 2015. "Energy Consumption Prediction for Electric Vehicles Based on Real-World Data," Energies, MDPI, vol. 8(8), pages 1-21, August.
- Zhong, Hai & Wang, Jiajun & Jia, Hongjie & Mu, Yunfei & Lv, Shilei, 2019. "Vector field-based support vector regression for building energy consumption prediction," Applied Energy, Elsevier, vol. 242(C), pages 403-414.
- Jin-Young Kim & Sung-Bae Cho, 2019. "Electric Energy Consumption Prediction by Deep Learning with State Explainable Autoencoder," Energies, MDPI, vol. 12(4), pages 1-14, February.
- He, Yan & Wu, Pengcheng & Li, Yufeng & Wang, Yulin & Tao, Fei & Wang, Yan, 2020. "A generic energy prediction model of machine tools using deep learning algorithms," Applied Energy, Elsevier, vol. 275(C).
- Wen, Lulu & Zhou, Kaile & Yang, Shanlin & Lu, Xinhui, 2019. "Optimal load dispatch of community microgrid with deep learning based solar power and load forecasting," Energy, Elsevier, vol. 171(C), pages 1053-1065.
- Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
- Luo, Jian & Hong, Tao & Fang, Shu-Cherng, 2018. "Benchmarking robustness of load forecasting models under data integrity attacks," International Journal of Forecasting, Elsevier, vol. 34(1), pages 89-104.
- Kim, Suwon & Kim, Seongcheol, 2016. "A multi-criteria approach toward discovering killer IoT application in Korea," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 143-155.
- Sehrish Malik & DoHyeun Kim, 2018. "Prediction-Learning Algorithm for Efficient Energy Consumption in Smart Buildings Based on Particle Regeneration and Velocity Boost in Particle Swarm Optimization Neural Networks," Energies, MDPI, vol. 11(5), pages 1-21, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Nikolaos Virtsionis Gkalinikis & Christoforos Nalmpantis & Dimitris Vrakas, 2022. "Torch-NILM: An Effective Deep Learning Toolkit for Non-Intrusive Load Monitoring in Pytorch," Energies, MDPI, vol. 15(7), pages 1-20, April.
- Khan, Zulfiqar Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2023. "Dual stream network with attention mechanism for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 338(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ijaz Ul Haq & Amin Ullah & Samee Ullah Khan & Noman Khan & Mi Young Lee & Seungmin Rho & Sung Wook Baik, 2021. "Sequential Learning-Based Energy Consumption Prediction Model for Residential and Commercial Sectors," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
- Ding, Zhikun & Chen, Weilin & Hu, Ting & Xu, Xiaoxiao, 2021. "Evolutionary double attention-based long short-term memory model for building energy prediction: Case study of a green building," Applied Energy, Elsevier, vol. 288(C).
- Khan, Noman & Khan, Samee Ullah & Baik, Sung Wook, 2023. "Deep dive into hybrid networks: A comparative study and novel architecture for efficient power prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
- Somu, Nivethitha & M R, Gauthama Raman & Ramamritham, Krithi, 2020. "A hybrid model for building energy consumption forecasting using long short term memory networks," Applied Energy, Elsevier, vol. 261(C).
- Somu, Nivethitha & Raman M R, Gauthama & Ramamritham, Krithi, 2021. "A deep learning framework for building energy consumption forecast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
- Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
- Fan, Cheng & Sun, Yongjun & Xiao, Fu & Ma, Jie & Lee, Dasheng & Wang, Jiayuan & Tseng, Yen Chieh, 2020. "Statistical investigations of transfer learning-based methodology for short-term building energy predictions," Applied Energy, Elsevier, vol. 262(C).
- Jiang, Ben & Li, Yu & Rezgui, Yacine & Zhang, Chengyu & Wang, Peng & Zhao, Tianyi, 2024. "Multi-source domain generalization deep neural network model for predicting energy consumption in multiple office buildings," Energy, Elsevier, vol. 299(C).
- Khan, Zulfiqar Ahmad & Khan, Shabbir Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2024. "DSPM: Dual sequence prediction model for efficient energy management in micro-grid," Applied Energy, Elsevier, vol. 356(C).
- Tang, Lingfeng & Xie, Haipeng & Wang, Xiaoyang & Bie, Zhaohong, 2023. "Privacy-preserving knowledge sharing for few-shot building energy prediction: A federated learning approach," Applied Energy, Elsevier, vol. 337(C).
- Satre-Meloy, Aven, 2019. "Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models," Energy, Elsevier, vol. 174(C), pages 148-168.
- Elsa Chaerun Nisa & Yean-Der Kuan, 2021. "Comparative Assessment to Predict and Forecast Water-Cooled Chiller Power Consumption Using Machine Learning and Deep Learning Algorithms," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
- Wenninger, Simon & Kaymakci, Can & Wiethe, Christian, 2022. "Explainable long-term building energy consumption prediction using QLattice," Applied Energy, Elsevier, vol. 308(C).
- Hu, Zehuan & Gao, Yuan & Sun, Luning & Mae, Masayuki & Imaizumi, Taiji, 2024. "Self-learning dynamic graph neural network with self-attention based on historical data and future data for multi-task multivariate residential air conditioning forecasting," Applied Energy, Elsevier, vol. 364(C).
- Yue, Naihua & Caini, Mauro & Li, Lingling & Zhao, Yang & Li, Yu, 2023. "A comparison of six metamodeling techniques applied to multi building performance vectors prediction on gymnasiums under multiple climate conditions," Applied Energy, Elsevier, vol. 332(C).
- Sunil Kumar Mohapatra & Sushruta Mishra & Hrudaya Kumar Tripathy & Akash Kumar Bhoi & Paolo Barsocchi, 2021. "A Pragmatic Investigation of Energy Consumption and Utilization Models in the Urban Sector Using Predictive Intelligence Approaches," Energies, MDPI, vol. 14(13), pages 1-28, June.
- Razak Olu-Ajayi & Hafiz Alaka & Hakeem Owolabi & Lukman Akanbi & Sikiru Ganiyu, 2023. "Data-Driven Tools for Building Energy Consumption Prediction: A Review," Energies, MDPI, vol. 16(6), pages 1-20, March.
- Gao, Lei & Liu, Tianyuan & Cao, Tao & Hwang, Yunho & Radermacher, Reinhard, 2021. "Comparing deep learning models for multi energy vectors prediction on multiple types of building," Applied Energy, Elsevier, vol. 301(C).
- Bampoulas, Adamantios & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2022. "An ensemble learning-based framework for assessing the energy flexibility of residential buildings with multicomponent energy systems," Applied Energy, Elsevier, vol. 315(C).
- Jason Runge & Radu Zmeureanu, 2021. "A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, MDPI, vol. 14(3), pages 1-26, January.
More about this item
Keywords
energy consumption prediction; machine learning; sequential learning; deep learning; artificial intelligence; smart grids; ensemble learning; renewable energy;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:6:p:611-:d:515736. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.