IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v118y2018icp138-145.html
   My bibliography  Save this article

Outdoor detection and visualization of hailstorm damages of photovoltaic plants

Author

Listed:
  • Muehleisen, Wolfgang
  • Eder, Gabriele C.
  • Voronko, Yuliya
  • Spielberger, Markus
  • Sonnleitner, Horst
  • Knoebl, Karl
  • Ebner, Rita
  • Ujvari, Gusztav
  • Hirschl, Christina

Abstract

Photovoltaic modules can experience damages of varying severity in the case of heavy hail storms. In the worst case, complete glass and solar cell breakage results in efficiency and security losses of the affected modules which therefore have to be replaced. However, there is a strong need to inspect the remaining modules directly in the field in order to assure no hidden damage. Three hail-affected photovoltaic plants in the south of Austria were investigated first with common standard methods like analysis of the plant monitoring data and thermography. Then, these plants were additionally investigated by novel non-destructive methods. With the aid of two innovative characterisation tools, outdoor electroluminescence and UV-fluorescence imaging, hail-induced damaging of solar cells can be detected even when the solar glass of the modules withstood the mechanical impact of the hailstorm and no damages are visible to the naked eye or well recognizable by thermography. The non-destructive, easy to handle and fast characterization technique UV-fluorescence imaging allows the detection and visualisation of hail induced cell damage. Modules showing partial cell breakage and/or micro cracks – as proven by outdoor electroluminescence measurements – and lead to a reduced electrical performance can be unequivocally identified.

Suggested Citation

  • Muehleisen, Wolfgang & Eder, Gabriele C. & Voronko, Yuliya & Spielberger, Markus & Sonnleitner, Horst & Knoebl, Karl & Ebner, Rita & Ujvari, Gusztav & Hirschl, Christina, 2018. "Outdoor detection and visualization of hailstorm damages of photovoltaic plants," Renewable Energy, Elsevier, vol. 118(C), pages 138-145.
  • Handle: RePEc:eee:renene:v:118:y:2018:i:c:p:138-145
    DOI: 10.1016/j.renene.2017.11.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117311114
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.11.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Høiaas, Ingeborg & Grujic, Katarina & Imenes, Anne Gerd & Burud, Ingunn & Olsen, Espen & Belbachir, Nabil, 2022. "Inspection and condition monitoring of large-scale photovoltaic power plants: A review of imaging technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Mühleisen, W. & Hirschl, C. & Brantegger, G. & Neumaier, L. & Spielberger, M. & Sonnleitner, H. & Kubicek, B. & Ujvari, G. & Ebner, R. & Schwark, M. & Eder, G.C. & Voronko, Y. & Knöbl, K. & Stoicescu,, 2019. "Scientific and economic comparison of outdoor characterisation methods for photovoltaic power plants," Renewable Energy, Elsevier, vol. 134(C), pages 321-329.
    3. In, Soh Young & Manav, Berk & Venereau, Clothilde M.A. & Cruz R., Luis Enrique & Weyant, John P., 2022. "Climate-related financial risk assessment on energy infrastructure investments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Rahman, Md Momtazur & Khan, Imran & Alameh, Kamal, 2021. "Potential measurement techniques for photovoltaic module failure diagnosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Clavijo-Blanco, J.A. & Álvarez-Tey, G. & Saborido-Barba, N. & Barberá-González, J.L. & García-López, C. & Jiménez-Castañeda, R., 2021. "Laboratory tests for the evaluation of the degradation of a photovoltaic plant of 2.85 MWp with different classes of PV modules," Renewable Energy, Elsevier, vol. 174(C), pages 262-277.
    6. Waqar Akram, M. & Li, Guiqiang & Jin, Yi & Chen, Xiao, 2022. "Failures of Photovoltaic modules and their Detection: A Review," Applied Energy, Elsevier, vol. 313(C).
    7. Ganesan, K. & Winston, D. Prince & Nesamalar, J. Jeslin Drusila & Pravin, M., 2024. "Output power enhancement of a bifacial solar photovoltaic with upside down installation during module defects," Applied Energy, Elsevier, vol. 353(PA).
    8. Chakraborty, Suprava & Haldkar, Avinash Kumar & Manoj Kumar, Nallapaneni, 2023. "Analysis of the hail impacts on the performance of commercially available photovoltaic modules of varying front glass thickness," Renewable Energy, Elsevier, vol. 203(C), pages 345-356.
    9. Tang, Wuqin & Yang, Qiang & Dai, Zhou & Yan, Wenjun, 2024. "Module defect detection and diagnosis for intelligent maintenance of solar photovoltaic plants: Techniques, systems and perspectives," Energy, Elsevier, vol. 297(C).
    10. Gabriele C. Eder & Yuliya Voronko & Christina Hirschl & Rita Ebner & Gusztáv Újvári & Wolfgang Mühleisen, 2018. "Non-Destructive Failure Detection and Visualization of Artificially and Naturally Aged PV Modules," Energies, MDPI, vol. 11(5), pages 1-14, April.
    11. Santhakumari, Manju & Sagar, Netramani, 2019. "A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 83-100.
    12. Tamás Orosz & Anton Rassõlkin & Pedro Arsénio & Peter Poór & Daniil Valme & Ádám Sleisz, 2024. "Current Challenges in Operation, Performance, and Maintenance of Photovoltaic Panels," Energies, MDPI, vol. 17(6), pages 1-22, March.
    13. Ustun, Taha Selim & Nakamura, Yasuhiro & Hashimoto, Jun & Otani, Kenji, 2019. "Performance analysis of PV panels based on different technologies after two years of outdoor exposure in Fukushima, Japan," Renewable Energy, Elsevier, vol. 136(C), pages 159-178.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:118:y:2018:i:c:p:138-145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.