IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v153y2024icp39-53.html
   My bibliography  Save this article

Pathway towards carbon peaking cities in the Chinese transport sector

Author

Listed:
  • Tao, Xiangyang
  • Zhao, Jing
  • Hong, Jingke
  • Xiao, Fei

Abstract

China has steadfastly pledged its dedication to accomplishing carbon peaking by 2030 and achieving carbon neutrality before 2060, a commitment widely recognized as the Dual Carbon Goal (DCG). The proposition of China's DCG presents formidable challenges for the advancement of the transport sector due to its significant contribution to carbon emissions. Consequently, new carbon abatement constraints have been enforced on carbon emissions within the Chinese transport sector. In pursuit of the carbon peaking goal, this research introduces the environmental context-dependent data envelopment analysis approach. The approach is employed to identify sustainable performance targets for the Chinese transport sector at the city level, while considering carbon abatement constraints. These sustainable performance targets not only provide insights on enhancing the environmental performance of these cities with minimum effort, but also offer a comprehensive pathway towards carbon peaking cities in the Chinese transport sector.

Suggested Citation

  • Tao, Xiangyang & Zhao, Jing & Hong, Jingke & Xiao, Fei, 2024. "Pathway towards carbon peaking cities in the Chinese transport sector," Transport Policy, Elsevier, vol. 153(C), pages 39-53.
  • Handle: RePEc:eee:trapol:v:153:y:2024:i:c:p:39-53
    DOI: 10.1016/j.tranpol.2024.05.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X24001288
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2024.05.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Guanghui & Chung, William & Zhang, Xiliang, 2013. "A study of carbon dioxide emissions performance of China's transport sector," Energy, Elsevier, vol. 50(C), pages 302-314.
    2. Chang, Young-Tae & Zhang, Ning & Danao, Denise & Zhang, Nan, 2013. "Environmental efficiency analysis of transportation system in China: A non-radial DEA approach," Energy Policy, Elsevier, vol. 58(C), pages 277-283.
    3. D’Alfonso, Tiziana & Jiang, Changmin & Bracaglia, Valentina, 2016. "Air transport and high-speed rail competition: Environmental implications and mitigation strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 261-276.
    4. Zhao, Pengjun & Zeng, Liangen & Li, Peilin & Lu, Haiyan & Hu, Haoyu & Li, Chengming & Zheng, Mengyuan & Li, Haitao & Yu, Zhao & Yuan, Dandan & Xie, Jinxin & Huang, Qi & Qi, Yuting, 2022. "China's transportation sector carbon dioxide emissions efficiency and its influencing factors based on the EBM DEA model with undesirable outputs and spatial Durbin model," Energy, Elsevier, vol. 238(PC).
    5. Sgouridis, Sgouris & Bonnefoy, Philippe A. & Hansman, R. John, 2011. "Air transportation in a carbon constrained world: Long-term dynamics of policies and strategies for mitigating the carbon footprint of commercial aviation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(10), pages 1077-1091.
    6. Chang, Wei-Ru & Hwang, Jenn-Jiang & Wu, Wei, 2017. "Environmental impact and sustainability study on biofuels for transportation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 277-288.
    7. Li, Wenxiang & Bao, Lei & Wang, Luqi & Li, Ye & Mai, Xianmin, 2019. "Comparative evaluation of global low-carbon urban transport," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 14-26.
    8. Ekici, Filiz & Orhan, Gamze & Gümüş, Öner & Bahce, Abdullah Burhan, 2022. "A policy on the externality problem and solution suggestions in air transportation: The environment and sustainability," Energy, Elsevier, vol. 258(C).
    9. Rong Tang & Jing Zhao & Yifan Liu & Xin Huang & Yanxu Zhang & Derong Zhou & Aijun Ding & Chris P. Nielsen & Haikun Wang, 2022. "Air quality and health co-benefits of China’s carbon dioxide emissions peaking before 2030," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Seiford, Lawrence M. & Zhu, Joe, 2003. "Context-dependent data envelopment analysis--Measuring attractiveness and progress," Omega, Elsevier, vol. 31(5), pages 397-408, October.
    11. Xiangyang Tao & Qingxian An & Beibei Xiong & Sijia Cai, 2023. "Sequential benchmark selection on Pareto-efficient frontiers with endogenous directions," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 74(1), pages 18-32, January.
    12. Cui, Qiang & Li, Ye, 2020. "A cross efficiency distinguishing method to explore the cooperation degree in dynamic airline environmental efficiency," Transport Policy, Elsevier, vol. 99(C), pages 31-43.
    13. Shengda Zhu & Xiaowen Fu & Adolf K.Y. Ng & Meifeng Luo & Ying-En Ge, 2018. "The environmental costs and economic implications of container shipping on the Northern Sea Route," Maritime Policy & Management, Taylor & Francis Journals, vol. 45(4), pages 456-477, May.
    14. Lee, Taehwee & Yeo, Gi-Tae & Thai, Vinh V., 2014. "Environmental efficiency analysis of port cities: Slacks-based measure data envelopment analysis approach," Transport Policy, Elsevier, vol. 33(C), pages 82-88.
    15. Juan Aparicio & José Ruiz & Inmaculada Sirvent, 2007. "Closest targets and minimum distance to the Pareto-efficient frontier in DEA," Journal of Productivity Analysis, Springer, vol. 28(3), pages 209-218, December.
    16. Zhang, Ning & Zhou, Peng & Kung, Chih-Chun, 2015. "Total-factor carbon emission performance of the Chinese transportation industry: A bootstrapped non-radial Malmquist index analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 584-593.
    17. Roman Hoffmann & Raya Muttarak & Jonas Peisker & Piero Stanig, 2022. "Climate change experiences raise environmental concerns and promote Green voting," Nature Climate Change, Nature, vol. 12(2), pages 148-155, February.
    18. Nuñez, Hector M. & Önal, Hayri, 2016. "An economic analysis of transportation fuel policies in Brazil: Fuel choice, land use, and environmental impacts," Energy Economics, Elsevier, vol. 55(C), pages 319-331.
    19. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmoudi, Reza & Emrouznejad, Ali & Shetab-Boushehri, Seyyed-Nader & Hejazi, Seyed Reza, 2020. "The origins, development and future directions of data envelopment analysis approach in transportation systems," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    2. Shuai Zhang & Xiaoman Zhao & Changwei Yuan & Xiu Wang, 2020. "Technological Bias and Its Influencing Factors in Sustainable Development of China’s Transportation," Sustainability, MDPI, vol. 12(14), pages 1-26, July.
    3. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    4. Hao Zhang & Jianxin You & Xuekelaiti Haiyirete & Tianyu Zhang, 2020. "Measuring Logistics Efficiency in China Considering Technology Heterogeneity and Carbon Emission through a Meta-Frontier Model," Sustainability, MDPI, vol. 12(19), pages 1-18, October.
    5. Ying Li & Yung-Ho Chiu & Liang Chun Lu, 2018. "Regional Energy, CO 2 , and Economic and Air Quality Index Performances in China: A Meta-Frontier Approach," Energies, MDPI, vol. 11(8), pages 1-20, August.
    6. Xian’En Wang & Shimeng Wang & Xipan Wang & Wenbo Li & Junnian Song & Haiyan Duan & Shuo Wang, 2019. "The Assessment of Carbon Performance under the Region-Sector Perspective based on the Nonparametric Estimation: A Case Study of the Northern Province in China," Sustainability, MDPI, vol. 11(21), pages 1-23, October.
    7. Omrani, Hashem & Yang, Zijiang & Karbasian, Arash & Teplova, Tamara, 2023. "Combination of top-down and bottom-up DEA models using PCA: A two-stage network DEA with shared input and undesirable output for evaluation of the road transport sector," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    8. Na, Joon-Ho & Choi, A-Young & Ji, Jianhua & Zhang, Dali, 2017. "Environmental efficiency analysis of Chinese container ports with CO2 emissions: An inseparable input-output SBM model," Journal of Transport Geography, Elsevier, vol. 65(C), pages 13-24.
    9. Feng, Chao & Wang, Miao, 2018. "Analysis of energy efficiency in China's transportation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 565-575.
    10. Song, Yao-yao & Li, Jing-jing & Wang, Jin-li & Yang, Guo-liang & Chen, Zhenling, 2022. "Eco-efficiency of Chinese transportation industry: A DEA approach with non-discretionary input," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    11. Jun-Fei Chu & Jie Wu & Ma-Lin Song, 2018. "An SBM-DEA model with parallel computing design for environmental efficiency evaluation in the big data context: a transportation system application," Annals of Operations Research, Springer, vol. 270(1), pages 105-124, November.
    12. Gang Tian & Jian Shi & Licheng Sun & Xingle Long & Benhai Guo, 2017. "Dynamic changes in the energy–carbon performance of Chinese transportation sector: a meta-frontier non-radial directional distance function approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 585-607, November.
    13. Meng, Fanyi & Su, Bin & Thomson, Elspeth & Zhou, Dequn & Zhou, P., 2016. "Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey," Applied Energy, Elsevier, vol. 183(C), pages 1-21.
    14. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    15. Monge, Juan F. & Ruiz, José L., 2023. "Setting closer targets based on non-dominated convex combinations of Pareto-efficient units: A bi-level linear programming approach in Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1084-1096.
    16. Meng, Conghui & Du, Xiaoyun & Zhu, Mengcheng & Ren, Yitian & Fang, Kai, 2023. "The static and dynamic carbon emission efficiency of transport industry in China," Energy, Elsevier, vol. 274(C).
    17. Liu, Hongwei & Yang, Ronglu & Wu, Jie & Chu, Junfei, 2021. "Total-factor energy efficiency change of the road transportation industry in China: A stochastic frontier approach," Energy, Elsevier, vol. 219(C).
    18. Tianbo Tang & Jianxin You & Hui Sun & Hao Zhang, 2019. "Transportation Efficiency Evaluation Considering the Environmental Impact for China’s Freight Sector: A Parallel Data Envelopment Analysis," Sustainability, MDPI, vol. 11(18), pages 1-24, September.
    19. Danish I. Godil & Zhang Yu & Arshian Sharif & Rimsha Usman & Syed Abdul Rehman Khan, 2021. "Investigate the role of technology innovation and renewable energy in reducing transport sector CO2 emission in China: A path toward sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(4), pages 694-707, July.
    20. Xiaohong Jiang & Jianxiao Ma & Huizhe Zhu & Xiucheng Guo & Zhaoguo Huang, 2020. "Evaluating the Carbon Emissions Efficiency of the Logistics Industry Based on a Super-SBM Model and the Malmquist Index from a Strong Transportation Strategy Perspective in China," IJERPH, MDPI, vol. 17(22), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:153:y:2024:i:c:p:39-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.