IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223023162.html
   My bibliography  Save this article

Fuel-saving and emission accounting: An airliner case study for green engine selection

Author

Listed:
  • Ekici, Selcuk
  • Ayar, Murat
  • Hikmet Karakoc, T.

Abstract

In this research, differences in the quantities of hazardous emissions induced by equipping the first composite constructed narrow body aircraft, which is commonly used in commercial aviation today, with the most common engine combinations are examined. Each engine combination that is the subject of this research is actively deployed by a number of airlines and serves the majority of passenger transportation demands. The objective is to clearly depict the variation in the quantities of emissions generated by the various engine types employed in this commonly used passenger aircraft. The instability in the amounts of emissions in various flight phases of the same aircraft, performed with various engine specifications on the same trajectory and route, is determined using EUROCONTROL's Integrated Aircraft Noise and Emissions Modelling Platform (IMPACT), which is founded on the Base of Aircraft Data, Federal Office of Civil Aviation (FOCA), and International Civil Aviation Organization's (ICAO) Helicopter and Aircraft Engine Emission Database. The research seeks to answer the following question: Considering that airlines serve many destinations throughout the year, how much fuel saving and, indirectly, emissions mitigation are achieved per sortie as a result of replacing the engines used by airlines in their existing fleets with the most environmentally friendly equivalents?

Suggested Citation

  • Ekici, Selcuk & Ayar, Murat & Hikmet Karakoc, T., 2023. "Fuel-saving and emission accounting: An airliner case study for green engine selection," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223023162
    DOI: 10.1016/j.energy.2023.128922
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223023162
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128922?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lai, Y.Y. & Christley, E. & Kulanovic, A. & Teng, C.C. & Björklund, A. & Nordensvärd, J. & Karakaya, E. & Urban, F., 2022. "Analysing the opportunities and challenges for mitigating the climate impact of aviation: A narrative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Cui, Qiang & Hu, Yu-xin & Yu, Li-ting, 2022. "Can the aviation industry achieve carbon emission reduction and revenue growth simultaneously under the CNG2020 strategy? An empirical study with 25 benchmarking airlines," Energy, Elsevier, vol. 245(C).
    3. Poullikkas, Andreas, 2005. "An overview of current and future sustainable gas turbine technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(5), pages 409-443, October.
    4. Ekici, Filiz & Orhan, Gamze & Gümüş, Öner & Bahce, Abdullah Burhan, 2022. "A policy on the externality problem and solution suggestions in air transportation: The environment and sustainability," Energy, Elsevier, vol. 258(C).
    5. Ekici, Selcuk, 2020. "Investigating routes performance of flight profile generated based on the off-design point: Elaboration of commercial aircraft-engine pairing," Energy, Elsevier, vol. 193(C).
    6. Balli, Ozgur & Caliskan, Nesrin & Caliskan, Hakan, 2023. "Aviation, energy, exergy, sustainability, exergoenvironmental and thermoeconomic analyses of a turbojet engine fueled with jet fuel and biofuel used on a pilot trainer aircraft," Energy, Elsevier, vol. 263(PD).
    7. Fatiha Guerroudji Meddah & Yousra Ayouani & Ishak H. A. Meddah, 2022. "An Integrated Approach to Geovisualize Epidemiological Data," International Journal of Applied Geospatial Research (IJAGR), IGI Global, vol. 13(1), pages 1-12, January.
    8. Zaporozhets, Oleksandr & Synylo, Kateryna, 2017. "Improvements on aircraft engine emission and emission inventory asesessment inside the airport area," Energy, Elsevier, vol. 140(P2), pages 1350-1357.
    9. Oana Andreea ION, 2022. "Migration Narratives: From Integration To Incorporation," The USV Annals of Economics and Public Administration, Stefan cel Mare University of Suceava, Romania, Faculty of Economics and Public Administration, vol. 22(2(36)), pages 155-166, December.
    10. Ming Zhang & Qianwen Huang & Sihan Liu & Yu Zhang, 2019. "Fuel Consumption Model of the Climbing Phase of Departure Aircraft Based on Flight Data Analysis," Sustainability, MDPI, vol. 11(16), pages 1-23, August.
    11. Andreas W. Schäfer & Antony D. Evans & Tom G. Reynolds & Lynnette Dray, 2016. "Costs of mitigating CO2 emissions from passenger aircraft," Nature Climate Change, Nature, vol. 6(4), pages 412-417, April.
    12. Babikian, Raffi & Lukachko, Stephen P. & Waitz, Ian A., 2002. "The historical fuel efficiency characteristics of regional aircraft from technological, operational, and cost perspectives," Journal of Air Transport Management, Elsevier, vol. 8(6), pages 389-400.
    13. Aygun, Hakan & Dursun, Omer Osman & Toraman, Suat, 2023. "Machine learning based approach for forecasting emission parameters of mixed flow turbofan engine at high power modes," Energy, Elsevier, vol. 271(C).
    14. Aygun, Hakan & Turan, Onder, 2020. "Exergetic sustainability off-design analysis of variable-cycle aero-engine in various bypass modes," Energy, Elsevier, vol. 195(C).
    15. Keith Powell & Liwei Li & Amirhassan Shams-Ansari & Jianfu Wang & Debin Meng & Neil Sinclair & Jiangdong Deng & Marko Lončar & Xiaoke Yi, 2022. "Integrated silicon carbide electro-optic modulator," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    16. Hagmann, Carmen & Semeijn, Janjaap & Vellenga, David B., 2015. "Exploring the green image of airlines: Passenger perceptions and airline choice," Journal of Air Transport Management, Elsevier, vol. 43(C), pages 37-45.
    17. Kaylee D. Hakkel & Maurangelo Petruzzella & Fang Ou & Anne Klinken & Francesco Pagliano & Tianran Liu & Rene P. J. Veldhoven & Andrea Fiore, 2022. "Integrated near-infrared spectral sensing," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kirmizi, Mehmet & Aygun, Hakan & Turan, Onder, 2024. "Energetic and exergetic metrics of a cargo aircraft turboprop propulsion system by using regression method for dynamic flight," Energy, Elsevier, vol. 296(C).
    2. Ekici, Selcuk & Ayar, Murat & Orhan, Ilkay & Karakoc, Tahir Hikmet, 2024. "Cruise altitude patterns for minimizing fuel consumption and emission: A detailed analysis of five prominent aircraft," Energy, Elsevier, vol. 295(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ekici, Selcuk & Ayar, Murat & Orhan, Ilkay & Karakoc, Tahir Hikmet, 2024. "Cruise altitude patterns for minimizing fuel consumption and emission: A detailed analysis of five prominent aircraft," Energy, Elsevier, vol. 295(C).
    2. Ekici, Selcuk & Ayar, Murat & Kilic, Ugur & Karakoc, T. Hikmet, 2023. "Performance based analysis for the Ankara-London route in terms of emissions and fuel consumption of different combinations of aircraft/engine: An IMPACT application," Journal of Air Transport Management, Elsevier, vol. 108(C).
    3. Kirmizi, Mehmet & Aygun, Hakan & Turan, Onder, 2024. "Energetic and exergetic metrics of a cargo aircraft turboprop propulsion system by using regression method for dynamic flight," Energy, Elsevier, vol. 296(C).
    4. Luo, Qiaodan & Zhao, Shengfeng & Zhou, Shiji & Yao, Lipan & Yang, Chengwu & Lu, Xingen & Zhu, Junqiang, 2024. "Influence of diversified dihedral stator on the thermodynamic performance and flow loss characteristics of a variable core driven fan stage," Energy, Elsevier, vol. 294(C).
    5. Cai, Changpeng & Wang, Yong & Fang, Juan & Chen, Haoying & Zheng, Qiangang & Zhang, Haibo, 2023. "Multiple aspects to flight mission performances improvement of commercial turbofan engine via variable geometry adjustment," Energy, Elsevier, vol. 263(PA).
    6. Adeline Montlaur & Luis Delgado & César Trapote-Barreira, 2021. "Analytical Models for CO 2 Emissions and Travel Time for Short-to-Medium-Haul Flights Considering Available Seats," Sustainability, MDPI, vol. 13(18), pages 1-23, September.
    7. Kirmizi, Mehmet & Aygun, Hakan & Turan, Onder, 2023. "Performance and energy analysis of turboprop engine for air freighter aircraft with the aid of multiple regression," Energy, Elsevier, vol. 283(C).
    8. Mello, Fabiana Peixoto de, 2024. "Voluntary carbon offset programs in aviation: A systematic literature review," Transport Policy, Elsevier, vol. 147(C), pages 158-168.
    9. Karabacak, Mustafa & Kirmizi, Mehmet & Aygun, Hakan & Turan, Onder, 2023. "Application of exergetic analysis to inverted Brayton cycle engine at different flight conditions," Energy, Elsevier, vol. 283(C).
    10. Peter Korba & Ingrid Sekelová & Martina Koščáková & Annamária Behúnová, 2023. "Passengers’ Knowledge and Attitudes toward Green Initiatives in Aviation," Sustainability, MDPI, vol. 15(7), pages 1-25, April.
    11. Abdalla, Muftah S.M. & Balli, Ozgur & Adali, Osama H. & Korba, Peter & Kale, Utku, 2023. "Thermodynamic, sustainability, environmental and damage cost analyses of jet fuel starter gas turbine engine," Energy, Elsevier, vol. 267(C).
    12. Aygun, Hakan & Kirmizi, Mehmet & Kilic, Ulas & Turan, Onder, 2023. "Multi-objective optimization of a small turbojet engine energetic performance," Energy, Elsevier, vol. 271(C).
    13. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    14. Sandra Benter & Adam Jönsson & Jonas Johansson & Lin Zhu & Evangelos Golias & Lars-Erik Wernersson & Anders Mikkelsen, 2023. "Geometric control of diffusing elements on InAs semiconductor surfaces via metal contacts," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    15. Ziya Sogut, M., 2021. "New approach for assessment of environmental effects based on entropy optimization of jet engine," Energy, Elsevier, vol. 234(C).
    16. Balli, Ozgur & Kale, Utku & Rohács, Dániel & Hikmet Karakoc, T., 2022. "Environmental damage cost and exergoenvironmental evaluations of piston prop aviation engines for the landing and take-off flight phases," Energy, Elsevier, vol. 261(PB).
    17. Francesco Gangi & Mario Mustilli & Lucia Michela Daniele & Maria Coscia, 2022. "The sustainable development of the aerospace industry: Drivers and impact of corporate environmental responsibility," Business Strategy and the Environment, Wiley Blackwell, vol. 31(1), pages 218-235, January.
    18. Jana Eßer & Manuel Frondel & Stephan Sommer, 2023. "Soziale Normen und der Emissionsausgleich bei Flügen: Evidenz für deutsche Haushalte [Social Norms and Flight Emission Offsets: Evidence for German Households]," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 17(1), pages 71-99, March.
    19. Zou, Bo & Elke, Matthew & Hansen, Mark & Kafle, Nabin, 2014. "Evaluating air carrier fuel efficiency in the US airline industry," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 306-330.
    20. Shukui Zhang & Hanxue Jiao & Yan Chen & Ruotong Yin & Xinning Huang & Qianru Zhao & Chong Tan & Shenyang Huang & Hugen Yan & Tie Lin & Hong Shen & Jun Ge & Xiangjian Meng & Weida Hu & Ning Dai & Xudon, 2024. "Multi-dimensional optical information acquisition based on a misaligned unipolar barrier photodetector," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223023162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.