IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224006595.html
   My bibliography  Save this article

Bio-multisensory-inspired gate-attention coordination model for forecasting short-term significant wave height

Author

Listed:
  • Wu, Han
  • Gao, Xiao-Zhi
  • Heng, Jia-Ni

Abstract

Accurate forecasting of significant wave heights (SWH) plays an important role in the generation and conversion of ocean wave energy, being a promising clean energy source, while a challenging task since the SWH is produced by a complex natural process. Additionally, some deep forecasting models integrate parallel and recursive structures via unexplained ways to present intelligent fitting, leading to insufficient inheritance of hybrid advantages. Since biological multisensory systems automatically cope with complex time series, this paper explores a bio-multisensory-inspired gate-attention coordination network (BGC-Net) for forecasting SWH. Specifically, inspired by the multisensory cognitive process, the BGC-Net includes sensory capture, brain memory, and forecasting components, and their collaboration offers a clear multi-level handling process. In internal implementations, through mimicking that multiple senses independently capture external stimuli, the first component adopts several activation functions for suppressing data fluctuations and detecting the complex nonlinear and linear features. Through mimicking that the left and right hemispheres interact and collaborate electrical impulses, the second component integrates both gate-driven recursive and self-attention-driven parallel structures to extract multivariate and temporal dependencies at the feature level. Through mimicking that a higher cerebral cortex fuses extracted information for the final cognition, the third component proposes three feature fusion ways of concatenate, attention, and gated fusion, and takes the best one to generate SWH forecasts. In summary, the BGC-Net not only has interpretability at the biological level but also effectively integrates the advantages of parallel and recursive structures. Five experiments and six analyses all indicate that the BGC-Net exceeds 17 baselines, has root mean squared error (RMSE) average improvements with 22.30% and 19.22% for two datasets, and provides references to support SWH forecasting.

Suggested Citation

  • Wu, Han & Gao, Xiao-Zhi & Heng, Jia-Ni, 2024. "Bio-multisensory-inspired gate-attention coordination model for forecasting short-term significant wave height," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006595
    DOI: 10.1016/j.energy.2024.130887
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224006595
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130887?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guillou, Nicolas, 2020. "Estimating wave energy flux from significant wave height and peak period," Renewable Energy, Elsevier, vol. 155(C), pages 1383-1393.
    2. Zheng, Zihao & Ali, Mumtaz & Jamei, Mehdi & Xiang, Yong & Abdulla, Shahab & Yaseen, Zaher Mundher & Farooque, Aitazaz A., 2023. "Multivariate data decomposition based deep learning approach to forecast one-day ahead significant wave height for ocean energy generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    3. Ali, Mumtaz & Prasad, Ramendra & Xiang, Yong & Deo, Ravinesh C., 2020. "Near real-time significant wave height forecasting with hybridized multiple linear regression algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    4. Zhao, Zhengling & Sun, Shaolong & Sun, Jingyun & Wang, Shouyang, 2024. "A novel hybrid model with two-layer multivariate decomposition for crude oil price forecasting," Energy, Elsevier, vol. 288(C).
    5. Ali, Mumtaz & Prasad, Ramendra & Xiang, Yong & Jamei, Mehdi & Yaseen, Zaher Mundher, 2023. "Ensemble robust local mean decomposition integrated with random forest for short-term significant wave height forecasting," Renewable Energy, Elsevier, vol. 205(C), pages 731-746.
    6. Wu, Han & Liang, Yan & Gao, Xiao-Zhi, 2023. "Left-right brain interaction inspired bionic deep network for forecasting significant wave height," Energy, Elsevier, vol. 278(PB).
    7. Yang, Shaobo & Deng, Zegui & Li, Xingfei & Zheng, Chongwei & Xi, Lintong & Zhuang, Jucheng & Zhang, Zhenquan & Zhang, Zhiyou, 2021. "A novel hybrid model based on STL decomposition and one-dimensional convolutional neural networks with positional encoding for significant wave height forecast," Renewable Energy, Elsevier, vol. 173(C), pages 531-543.
    8. Wu, Han & Liang, Yan & Heng, Jiani, 2023. "Pulse-diagnosis-inspired multi-feature extraction deep network for short-term electricity load forecasting," Applied Energy, Elsevier, vol. 339(C).
    9. Gao, Ruobin & Li, Ruilin & Hu, Minghui & Suganthan, Ponnuthurai Nagaratnam & Yuen, Kum Fai, 2023. "Dynamic ensemble deep echo state network for significant wave height forecasting," Applied Energy, Elsevier, vol. 329(C).
    10. Khan, Zulfiqar Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2023. "Dual stream network with attention mechanism for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 338(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Zihao & Ali, Mumtaz & Jamei, Mehdi & Xiang, Yong & Abdulla, Shahab & Yaseen, Zaher Mundher & Farooque, Aitazaz A., 2023. "Multivariate data decomposition based deep learning approach to forecast one-day ahead significant wave height for ocean energy generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    2. Daniel Clemente & Felipe Teixeira-Duarte & Paulo Rosa-Santos & Francisco Taveira-Pinto, 2023. "Advancements on Optimization Algorithms Applied to Wave Energy Assessment: An Overview on Wave Climate and Energy Resource," Energies, MDPI, vol. 16(12), pages 1-28, June.
    3. Mahdavi-Meymand, Amin & Sulisz, Wojciech, 2023. "Application of nested artificial neural network for the prediction of significant wave height," Renewable Energy, Elsevier, vol. 209(C), pages 157-168.
    4. Zhao, Lingxiao & Li, Zhiyang & Pei, Yuguo & Qu, Leilei, 2024. "Disentangled Seasonal-Trend representation of improved CEEMD-GRU joint model with entropy-driven reconstruction to forecast significant wave height," Renewable Energy, Elsevier, vol. 226(C).
    5. Pang, Junheng & Dong, Sheng, 2023. "A novel multivariable hybrid model to improve short and long-term significant wave height prediction," Applied Energy, Elsevier, vol. 351(C).
    6. Wu, Han & Liang, Yan & Gao, Xiao-Zhi & Du, Pei, 2024. "Auditory-circuit-motivated deep network with application to short-term electricity price forecasting," Energy, Elsevier, vol. 288(C).
    7. Chengcheng Gu & Hua Li, 2022. "Review on Deep Learning Research and Applications in Wind and Wave Energy," Energies, MDPI, vol. 15(4), pages 1-19, February.
    8. Mahdavi-Meymand, Amin & Sulisz, Wojciech, 2024. "Development of pyramid neural networks for prediction of significant wave height for renewable energy farms," Applied Energy, Elsevier, vol. 362(C).
    9. Zheng Wan & Hui Li, 2023. "Short-Term Power Load Forecasting Based on Feature Filtering and Error Compensation under Imbalanced Samples," Energies, MDPI, vol. 16(10), pages 1-22, May.
    10. Khan, Zulfiqar Ahmad & Khan, Shabbir Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2024. "DSPM: Dual sequence prediction model for efficient energy management in micro-grid," Applied Energy, Elsevier, vol. 356(C).
    11. Ngoc-Lan Huynh, Anh & Deo, Ravinesh C. & Ali, Mumtaz & Abdulla, Shahab & Raj, Nawin, 2021. "Novel short-term solar radiation hybrid model: Long short-term memory network integrated with robust local mean decomposition," Applied Energy, Elsevier, vol. 298(C).
    12. Hu, Yue & Liu, Hanjing & Wu, Senzhen & Zhao, Yuan & Wang, Zhijin & Liu, Xiufeng, 2024. "Temporal collaborative attention for wind power forecasting," Applied Energy, Elsevier, vol. 357(C).
    13. Roy, Sanjoy, 2024. "Standard log-capture differentials as performance metrics for deepwater wave power generation," Energy, Elsevier, vol. 299(C).
    14. Gao, Ruobin & Li, Ruilin & Hu, Minghui & Suganthan, Ponnuthurai Nagaratnam & Yuen, Kum Fai, 2023. "Dynamic ensemble deep echo state network for significant wave height forecasting," Applied Energy, Elsevier, vol. 329(C).
    15. Ali, Mumtaz & Prasad, Ramendra & Xiang, Yong & Jamei, Mehdi & Yaseen, Zaher Mundher, 2023. "Ensemble robust local mean decomposition integrated with random forest for short-term significant wave height forecasting," Renewable Energy, Elsevier, vol. 205(C), pages 731-746.
    16. Peng, Simin & Zhu, Junchao & Wu, Tiezhou & Yuan, Caichenran & Cang, Junjie & Zhang, Kai & Pecht, Michael, 2024. "Prediction of wind and PV power by fusing the multi-stage feature extraction and a PSO-BiLSTM model," Energy, Elsevier, vol. 298(C).
    17. Gómez-Orellana, A.M. & Guijo-Rubio, D. & Gutiérrez, P.A. & Hervás-Martínez, C., 2022. "Simultaneous short-term significant wave height and energy flux prediction using zonal multi-task evolutionary artificial neural networks," Renewable Energy, Elsevier, vol. 184(C), pages 975-989.
    18. Yongning Zhang & Xiaoying Ren & Fei Zhang & Yulei Liu & Jierui Li, 2024. "A Deep Learning-Based Dual-Scale Hybrid Model for Ultra-Short-Term Photovoltaic Power Forecasting," Sustainability, MDPI, vol. 16(17), pages 1-22, August.
    19. Francisco Haces-Fernandez & Hua Li & David Ramirez, 2022. "Analysis of Wave Energy Behavior and Its Underlying Reasons in the Gulf of Mexico Based on Computer Animation and Energy Events Concept," Sustainability, MDPI, vol. 14(8), pages 1-23, April.
    20. Fatma Mazen Ali Mazen & Yomna Shaker & Rania Ahmed Abul Seoud, 2023. "Forecasting of Solar Power Using GRU–Temporal Fusion Transformer Model and DILATE Loss Function," Energies, MDPI, vol. 16(24), pages 1-24, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.