IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v185y2023ics1364032123005026.html
   My bibliography  Save this article

Multivariate data decomposition based deep learning approach to forecast one-day ahead significant wave height for ocean energy generation

Author

Listed:
  • Zheng, Zihao
  • Ali, Mumtaz
  • Jamei, Mehdi
  • Xiang, Yong
  • Abdulla, Shahab
  • Yaseen, Zaher Mundher
  • Farooque, Aitazaz A.

Abstract

Significant wave height is an average of the largest ocean waves, which are important for renewable and sustainable energy resource generation. A large significant wave height can cause beach erosion, and marine navigation problems in a storm. A novel data decomposition based deep learning modelling framework has been proposed where Multivariate Variational Mode Decomposition (MVMD) is integrated with Gated Recurrent Unit (GRU) to design the MVMD-GRU model. First, a correlation matrix is established to identify statistically important predictor lags. Next, the MVMD is employed to decompose the predictor lags into intrinsic mode functions (IMFs). The GRU model is then applied to the IMFs as inputs to design the MVMD-GRU framework to forecast one-day ahead significant wave height. Several other benchmarking deep learning models were hybridized with MVMD for comparison purposes. The outcomes suggest that the hybrid MVMD-GRU achieved better accuracy using goodness-of-fit metrics for Hay Point, Townsville, and Gold Coast stations in Queensland, Australia. The results show that MVMD significantly improved the forecasting accuracy of the GRU model in terms of WIE = 0.983, 0.918, 0.983, NSE = 0.932, 0.735, 0.934, LME = 0.978, 0.758, 0.752 for Hay Point, Townsville, and Gold Coast stations. This work is valuable to monitor and manage clean energy resources to optimize sustained energy generation.

Suggested Citation

  • Zheng, Zihao & Ali, Mumtaz & Jamei, Mehdi & Xiang, Yong & Abdulla, Shahab & Yaseen, Zaher Mundher & Farooque, Aitazaz A., 2023. "Multivariate data decomposition based deep learning approach to forecast one-day ahead significant wave height for ocean energy generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:rensus:v:185:y:2023:i:c:s1364032123005026
    DOI: 10.1016/j.rser.2023.113645
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123005026
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113645?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ali, Mumtaz & Prasad, Ramendra & Xiang, Yong & Deo, Ravinesh C., 2020. "Near real-time significant wave height forecasting with hybridized multiple linear regression algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    2. Malik, Anurag & Jamei, Mehdi & Ali, Mumtaz & Prasad, Ramendra & Karbasi, Masoud & Yaseen, Zaher Mundher, 2022. "Multi-step daily forecasting of reference evapotranspiration for different climates of India: A modern multivariate complementary technique reinforced with ridge regression feature selection," Agricultural Water Management, Elsevier, vol. 272(C).
    3. Zheng, Chong Wei & Li, Chong Yin, 2015. "Variation of the wave energy and significant wave height in the China Sea and adjacent waters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 381-387.
    4. Zheng, Chong-wei, 2021. "Global oceanic wave energy resource dataset—with the Maritime Silk Road as a case study," Renewable Energy, Elsevier, vol. 169(C), pages 843-854.
    5. Carballo, R. & Arean, N. & Álvarez, M. & López, I. & Castro, A. & López, M. & Iglesias, G., 2019. "Wave farm planning through high-resolution resource and performance characterization," Renewable Energy, Elsevier, vol. 135(C), pages 1097-1107.
    6. Kalogeri, Christina & Galanis, George & Spyrou, Christos & Diamantis, Dimitris & Baladima, Foteini & Koukoula, Marika & Kallos, George, 2017. "Assessing the European offshore wind and wave energy resource for combined exploitation," Renewable Energy, Elsevier, vol. 101(C), pages 244-264.
    7. Fu, Yang & Ying, Feixiang & Huang, Lingling & Liu, Yang, 2023. "Multi-step-ahead significant wave height prediction using a hybrid model based on an innovative two-layer decomposition framework and LSTM," Renewable Energy, Elsevier, vol. 203(C), pages 455-472.
    8. Ali, Mumtaz & Prasad, Ramendra, 2019. "Significant wave height forecasting via an extreme learning machine model integrated with improved complete ensemble empirical mode decomposition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 281-295.
    9. Yang, Shaobo & Deng, Zegui & Li, Xingfei & Zheng, Chongwei & Xi, Lintong & Zhuang, Jucheng & Zhang, Zhenquan & Zhang, Zhiyou, 2021. "A novel hybrid model based on STL decomposition and one-dimensional convolutional neural networks with positional encoding for significant wave height forecast," Renewable Energy, Elsevier, vol. 173(C), pages 531-543.
    10. Gao, Feng & Shao, Xueyan, 2022. "A novel interval decomposition ensemble model for interval carbon price forecasting," Energy, Elsevier, vol. 243(C).
    11. Sloughter, J. McLean & Gneiting, Tilmann & Raftery, Adrian E., 2010. "Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 25-35.
    12. Gao, Ruobin & Li, Ruilin & Hu, Minghui & Suganthan, Ponnuthurai Nagaratnam & Yuen, Kum Fai, 2023. "Dynamic ensemble deep echo state network for significant wave height forecasting," Applied Energy, Elsevier, vol. 329(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Han & Gao, Xiao-Zhi & Heng, Jia-Ni, 2024. "Bio-multisensory-inspired gate-attention coordination model for forecasting short-term significant wave height," Energy, Elsevier, vol. 294(C).
    2. Mahdavi-Meymand, Amin & Sulisz, Wojciech, 2024. "Development of pyramid neural networks for prediction of significant wave height for renewable energy farms," Applied Energy, Elsevier, vol. 362(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Han & Gao, Xiao-Zhi & Heng, Jia-Ni, 2024. "Bio-multisensory-inspired gate-attention coordination model for forecasting short-term significant wave height," Energy, Elsevier, vol. 294(C).
    2. Ali, Mumtaz & Prasad, Ramendra & Xiang, Yong & Jamei, Mehdi & Yaseen, Zaher Mundher, 2023. "Ensemble robust local mean decomposition integrated with random forest for short-term significant wave height forecasting," Renewable Energy, Elsevier, vol. 205(C), pages 731-746.
    3. Gómez-Orellana, A.M. & Guijo-Rubio, D. & Gutiérrez, P.A. & Hervás-Martínez, C., 2022. "Simultaneous short-term significant wave height and energy flux prediction using zonal multi-task evolutionary artificial neural networks," Renewable Energy, Elsevier, vol. 184(C), pages 975-989.
    4. Daniel Clemente & Felipe Teixeira-Duarte & Paulo Rosa-Santos & Francisco Taveira-Pinto, 2023. "Advancements on Optimization Algorithms Applied to Wave Energy Assessment: An Overview on Wave Climate and Energy Resource," Energies, MDPI, vol. 16(12), pages 1-28, June.
    5. Mahdavi-Meymand, Amin & Sulisz, Wojciech, 2023. "Application of nested artificial neural network for the prediction of significant wave height," Renewable Energy, Elsevier, vol. 209(C), pages 157-168.
    6. Zhao, Lingxiao & Li, Zhiyang & Pei, Yuguo & Qu, Leilei, 2024. "Disentangled Seasonal-Trend representation of improved CEEMD-GRU joint model with entropy-driven reconstruction to forecast significant wave height," Renewable Energy, Elsevier, vol. 226(C).
    7. Pang, Junheng & Dong, Sheng, 2023. "A novel multivariable hybrid model to improve short and long-term significant wave height prediction," Applied Energy, Elsevier, vol. 351(C).
    8. Fu, Yang & Ying, Feixiang & Huang, Lingling & Liu, Yang, 2023. "Multi-step-ahead significant wave height prediction using a hybrid model based on an innovative two-layer decomposition framework and LSTM," Renewable Energy, Elsevier, vol. 203(C), pages 455-472.
    9. Xueyan Li & Zhen Yu & Hengliang Qu & Moyao Yang & Hongyuan Shi & Zhenhua Zhang, 2023. "Experimental Study on the Aerodynamic Performance and Wave Energy Capture Efficiency of Square and Curved OWC Wave Energy Conversion Devices," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    10. Ngoc-Lan Huynh, Anh & Deo, Ravinesh C. & Ali, Mumtaz & Abdulla, Shahab & Raj, Nawin, 2021. "Novel short-term solar radiation hybrid model: Long short-term memory network integrated with robust local mean decomposition," Applied Energy, Elsevier, vol. 298(C).
    11. Gao, Ruobin & Li, Ruilin & Hu, Minghui & Suganthan, Ponnuthurai Nagaratnam & Yuen, Kum Fai, 2023. "Dynamic ensemble deep echo state network for significant wave height forecasting," Applied Energy, Elsevier, vol. 329(C).
    12. Antonio Manuel Gómez-Orellana & Juan Carlos Fernández & Manuel Dorado-Moreno & Pedro Antonio Gutiérrez & César Hervás-Martínez, 2021. "Building Suitable Datasets for Soft Computing and Machine Learning Techniques from Meteorological Data Integration: A Case Study for Predicting Significant Wave Height and Energy Flux," Energies, MDPI, vol. 14(2), pages 1-33, January.
    13. González-Cabrera, Nestor & Ortiz-Bejar, Jose & Zamora-Mendez, Alejandro & Arrieta Paternina, Mario R., 2021. "On the Improvement of representative demand curves via a hierarchical agglomerative clustering for power transmission network investment," Energy, Elsevier, vol. 222(C).
    14. Li, Baozhu & Lv, Xiaotian & Chen, Jiaxin, 2024. "Demand and supply gap analysis of Chinese new energy vehicle charging infrastructure: Based on CNN-LSTM prediction model," Renewable Energy, Elsevier, vol. 220(C).
    15. Wen, Yi & Kamranzad, Bahareh & Lin, Pengzhi, 2022. "Joint exploitation potential of offshore wind and wave energy along the south and southeast coasts of China," Energy, Elsevier, vol. 249(C).
    16. Jamei, Mehdi & Sharma, Prabhakar & Ali, Mumtaz & Bora, Bhaskor J. & Malik, Anurag & Paramasivam, Prabhu & Farooque, Aitazaz A. & Abdulla, Shahab, 2024. "Application of an explainable glass-box machine learning approach for prognostic analysis of a biogas-powered small agriculture engine," Energy, Elsevier, vol. 288(C).
    17. Nicolas Guillou & George Lavidas & Bahareh Kamranzad, 2023. "Wave Energy in Brittany (France)—Resource Assessment and WEC Performances," Sustainability, MDPI, vol. 15(2), pages 1-27, January.
    18. Chengcheng Gu & Hua Li, 2022. "Review on Deep Learning Research and Applications in Wind and Wave Energy," Energies, MDPI, vol. 15(4), pages 1-19, February.
    19. Rusu, Liliana, 2020. "A projection of the expected wave power in the Black Sea until the end of the 21st century," Renewable Energy, Elsevier, vol. 160(C), pages 136-147.
    20. Ali, Mumtaz & Prasad, Ramendra & Xiang, Yong & Deo, Ravinesh C., 2020. "Near real-time significant wave height forecasting with hybridized multiple linear regression algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:185:y:2023:i:c:s1364032123005026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.