IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v293y2024ics0360544224004651.html
   My bibliography  Save this article

Extending the lower bound of attainable load-independent voltage gain values range in contactless, feedbackless and sensorless power delivery links

Author

Listed:
  • Vulfovich, Andrey
  • Kuperman, Alon

Abstract

It is well-known that series(capacitive)-series(capacitive) compensated inductive wireless power transfer links (SS(CC)-IWPTL) operating at fixed frequency with constant coupling coefficient may be designed to attain arbitrary load independent voltage gain (LIVG) value, residing within a region defined only by loosely coupled transformer (LCT) parameters. Such a characteristic allows designing the system to be sensorless and operate without feedback, which is an extremely useful feature in hostile environment applications. Unfortunately, LCT parameters are not selected arbitrarily in practice; hence, the desired LIVG value may reside outside the attainable region, calling for an additional power conversion stage. In particular, region of attainable LIVG values is especially narrow when LCT inductances ratio is imposed by the application and thus cannot be freely selected. One of existing challenges is regulating the system output to low DC voltage while it is being fed from a much higher valued voltage source, i.e. calling for an extremely low LIVG value. The paper demonstrates that adopting an inductor rather than a capacitor as primary series compensation element allows to extend the lower bound of attainable LIVG values region for given LCT and operating frequency, potentially eliminating the need for an additional step-down power converter. Resulting coil-to-coil efficiency is quantified and guidelines for sizing corresponding compensation elements pair are established as well. Simulations and experiments accurately verify the proposed methodology.

Suggested Citation

  • Vulfovich, Andrey & Kuperman, Alon, 2024. "Extending the lower bound of attainable load-independent voltage gain values range in contactless, feedbackless and sensorless power delivery links," Energy, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004651
    DOI: 10.1016/j.energy.2024.130693
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224004651
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130693?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeng, Hulong & Jiao, Pengcheng & Liu, Yonghui & Karki, Ujjwal & Peng, Fang Z., 2022. "Analytical modeling of resonant converters in frequency domain for wireless power transfer: Continuous current mode (CCM) operation," Energy, Elsevier, vol. 246(C).
    2. Samuel Müller & David Maier & Nejila Parspour, 2023. "Inductive Electrically Excited Synchronous Machine for Electrical Vehicles—Design, Optimization and Measurement," Energies, MDPI, vol. 16(4), pages 1-23, February.
    3. Lahiry, Archiman & Le, Khoa N. & Bao, Vo Nguyen Quoc & Tam, Vivian W.Y., 2023. "Performance Analysis of Unmanned Aerial Vehicle Enabled Wireless Power Transfer Considering Radio Frequency System Imperfections," Energy, Elsevier, vol. 267(C).
    4. García-Vázquez, Carlos A. & Llorens-Iborra, Francisco & Fernández-Ramírez, Luis M. & Sánchez-Sainz, Higinio & Jurado, Francisco, 2017. "Comparative study of dynamic wireless charging of electric vehicles in motorway, highway and urban stretches," Energy, Elsevier, vol. 137(C), pages 42-57.
    5. Alwesabi, Yaseen & Liu, Zhaocai & Kwon, Soongeol & Wang, Yong, 2021. "A novel integration of scheduling and dynamic wireless charging planning models of battery electric buses," Energy, Elsevier, vol. 230(C).
    6. Vulfovich, A. & Kolesnik, S. & Baimel, D. & Gutman, M. & Geftler, A. & Kuperman, A., 2022. "Output characteristics modeling and experimental verification of secondary-uncompensated inductive power delivery link operating without feedback," Energy, Elsevier, vol. 252(C).
    7. Li, Bin & Dong, Xujun & Wen, Jianghui, 2022. "Cooperative-driving control for mixed fleets at wireless charging sections for lane changing behaviour," Energy, Elsevier, vol. 243(C).
    8. Darhovsky, Yegal & Mellincovsky, Martin & Baimel, Dmitry & Kuperman, Alon, 2021. "A novel contactless, feedbackless and sensorless power delivery link to electromagnetic levitation melting system residing in sealed compartment," Energy, Elsevier, vol. 231(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vulfovich, Andrey & Kuperman, Alon, 2024. "Increasing tolerable coupling coefficients range of series-series compensated inductive wireless power transfer systems operating in restricted sub-resonant frequency region with constant current outp," Energy, Elsevier, vol. 292(C).
    2. Tan, Zhen & Liu, Fan & Chan, Hing Kai & Gao, H. Oliver, 2022. "Transportation systems management considering dynamic wireless charging electric vehicles: Review and prospects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    3. Vulfovich, A. & Kolesnik, S. & Baimel, D. & Gutman, M. & Geftler, A. & Kuperman, A., 2022. "Output characteristics modeling and experimental verification of secondary-uncompensated inductive power delivery link operating without feedback," Energy, Elsevier, vol. 252(C).
    4. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    5. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    6. Alicia Triviño-Cabrera & Zhengyu Lin & José A. Aguado, 2018. "Impact of Coil Misalignment in Data Transmission over the Inductive Link of an EV Wireless Charger," Energies, MDPI, vol. 11(3), pages 1-11, March.
    7. Feifeng Zheng & Zhaojie Wang & Ming Liu, 2022. "Overnight charging scheduling of battery electric buses with uncertain charging time," Operational Research, Springer, vol. 22(5), pages 4865-4903, November.
    8. Foda, Ahmed & Abdelaty, Hatem & Mohamed, Moataz & El-Saadany, Ehab, 2023. "A generic cost-utility-emission optimization for electric bus transit infrastructure planning and charging scheduling," Energy, Elsevier, vol. 277(C).
    9. Zeng, Ziling & Wang, Tingsong & Qu, Xiaobo, 2024. "En-route charge scheduling for an electric bus network: Stochasticity and real-world practice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    10. Khaleghikarahrodi, Mehrsa & Macht, Gretchen A., 2023. "Patterns, no patterns, that is the question: Quantifying users’ electric vehicle charging," Transport Policy, Elsevier, vol. 141(C), pages 291-304.
    11. Zhou, Yu & Wang, Hua & Wang, Yun & Yu, Bin & Tang, Tianpei, 2024. "Charging facility planning and scheduling problems for battery electric bus systems: A comprehensive review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    12. Ki Hong Kim & Young Jae Han & Sugil Lee & Sung Won Cho & Chulung Lee, 2019. "Text Mining for Patent Analysis to Forecast Emerging Technologies in Wireless Power Transfer," Sustainability, MDPI, vol. 11(22), pages 1-24, November.
    13. Wen, Jianghui & Zhan, Xiaomei & Wu, Chaozhong & Xiao, Xinping & Lyu, Nengchao, 2023. "Risky driving behavior propagation: A novel stochastic SIR model and two-stage risk quantification method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    14. Yudai Honma & Daisuke Hasegawa & Katsuhiro Hata & Takashi Oguchi, 2024. "Locational Analysis of In-motion Wireless Power Transfer System for Long-distance Trips by Electric Vehicles: Optimal Locations and Economic Rationality in Japanese Expressway Network," Networks and Spatial Economics, Springer, vol. 24(1), pages 261-290, March.
    15. Shehabeldeen, Ali & Foda, Ahmed & Mohamed, Moataz, 2024. "A multi-stage optimization of battery electric bus transit with battery degradation," Energy, Elsevier, vol. 299(C).
    16. Higinio Sánchez-Sáinz & Carlos-Andrés García-Vázquez & Francisco Llorens Iborra & Luis M. Fernández-Ramírez, 2019. "Methodology for the Optimal Design of a Hybrid Charging Station of Electric and Fuel Cell Vehicles Supplied by Renewable Energies and an Energy Storage System," Sustainability, MDPI, vol. 11(20), pages 1-20, October.
    17. Rogkas, N. & Karampasakis, E. & Fotopoulou, M. & Rakopoulos, D., 2024. "Assessment of heat transfer mechanisms of a novel high-frequency inductive power transfer system and coupled simulation using FEA," Energy, Elsevier, vol. 300(C).
    18. Alwesabi, Yaseen & Avishan, Farzad & Yanıkoğlu, İhsan & Liu, Zhaocai & Wang, Yong, 2022. "Robust strategic planning of dynamic wireless charging infrastructure for electric buses," Applied Energy, Elsevier, vol. 307(C).
    19. Ahmed A. S. Mohamed & Ahmed A. Shaier & Hamid Metwally & Sameh I. Selem, 2022. "An Overview of Dynamic Inductive Charging for Electric Vehicles," Energies, MDPI, vol. 15(15), pages 1-59, August.
    20. Lim, Lek Keng & Muis, Zarina Ab & Ho, Wai Shin & Hashim, Haslenda & Bong, Cassendra Phun Chien, 2023. "Review of the energy forecasting and scheduling model for electric buses," Energy, Elsevier, vol. 263(PD).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.