IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v293y2024ics0360544224003852.html
   My bibliography  Save this article

Experiment verification and simulation optimization of phase change material cool roof in summer -- A case study of Chongqing, China

Author

Listed:
  • Jiang, Lina
  • Gao, Yafeng
  • Zhuang, Chaoqun
  • Feng, Chi
  • Zhang, Xiaotong
  • Guan, Jingxuan

Abstract

Strengthening the thermal performance of building envelopes is an important direction towards achieving energy efficiency. This paper investigated the thermal performance and energy-saving effect of phase change material (PCM) cool roofs in office buildings during the summer season in Chongqing, leveraging a combination of measurement and simulation techniques. Compared to ordinary and PCM roofs, the PCM cool roof exhibited improved thermal performance, indoor thermal environment, and enhanced building energy savings. Results showed that the inner wall temperature of the PCM cool roof was 6.3 °C lower than that of an ordinary roof, and had a cooling range 65.1% higher than that of a PCM roof. Through computational fluid dynamics (CFD) simulations, this study analyzed the influence of five parameters on the thermal performance and latent heat utilization of the PCM cool roof. Finally, the energy-saving potential and economic benefits of using PCM cool roof in an office building in Chongqing were simulated. This study is helpful to the popularization and application of PCM cool roof.

Suggested Citation

  • Jiang, Lina & Gao, Yafeng & Zhuang, Chaoqun & Feng, Chi & Zhang, Xiaotong & Guan, Jingxuan, 2024. "Experiment verification and simulation optimization of phase change material cool roof in summer -- A case study of Chongqing, China," Energy, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224003852
    DOI: 10.1016/j.energy.2024.130613
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224003852
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130613?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Staszczuk, Anna & Kuczyński, Tadeusz, 2021. "The impact of wall and roof material on the summer thermal performance of building in a temperate climate," Energy, Elsevier, vol. 228(C).
    2. Park, June Young & Nagy, Zoltan, 2018. "Comprehensive analysis of the relationship between thermal comfort and building control research - A data-driven literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2664-2679.
    3. Zhang, Shu & Ma, Yuxin & Li, Dong & Liu, Changyu & Yang, Ruitong, 2022. "Thermal performance of a reversible multiple-glazing roof filled with two PCM," Renewable Energy, Elsevier, vol. 182(C), pages 1080-1093.
    4. Chen, Xing-ni & Xu, Bin & Fei, Yue & Gan, Wen-tao & Pei, Gang, 2023. "Parameter optimization of phase change material and the combination of phase change material and cool paint according to corresponding energy consumption characteristics under various climates," Energy, Elsevier, vol. 277(C).
    5. Cui, Huanyu & Cao, Yuequn, 2023. "How can market-oriented environmental regulation improve urban energy efficiency? Evidence from quasi-experiment in China's SO2 trading emissions system," Energy, Elsevier, vol. 278(C).
    6. Roman, Kibria K. & O'Brien, Timothy & Alvey, Jedediah B. & Woo, OhJin, 2016. "Simulating the effects of cool roof and PCM (phase change materials) based roof to mitigate UHI (urban heat island) in prominent US cities," Energy, Elsevier, vol. 96(C), pages 103-117.
    7. Vasco Granadeiro & Margarida Almeida & Tiago Souto & Vítor Leal & João Machado & Adélio Mendes, 2020. "Thermochromic Paints on External Surfaces: Impact Assessment for a Residential Building through Thermal and Energy Simulation," Energies, MDPI, vol. 13(8), pages 1-16, April.
    8. Yu, Jinghua & Yang, Qingchen & Ye, Hong & Luo, Yongqiang & Huang, Junchao & Xu, Xinhua & Gang, Wenjie & Wang, Jinbo, 2020. "Thermal performance evaluation and optimal design of building roof with outer-layer shape-stabilized PCM," Renewable Energy, Elsevier, vol. 145(C), pages 2538-2549.
    9. Abdul Mujeebu, Muhammad & Bano, Farheen, 2022. "Integration of passive energy conservation measures in a detached residential building design in warm humid climate," Energy, Elsevier, vol. 255(C).
    10. Saafi, Khawla & Daouas, Naouel, 2018. "A life-cycle cost analysis for an optimum combination of cool coating and thermal insulation of residential building roofs in Tunisia," Energy, Elsevier, vol. 152(C), pages 925-938.
    11. Liu, Changyu & Wu, Yangyang & Bian, Ji & Li, Dong & Liu, Xiaoyan, 2018. "Influence of PCM design parameters on thermal and optical performance of multi-layer glazed roof," Applied Energy, Elsevier, vol. 212(C), pages 151-161.
    12. Zhang, Yan & Teoh, Bak Koon & Wu, Maozhi & Chen, Jiayu & Zhang, Limao, 2023. "Data-driven estimation of building energy consumption and GHG emissions using explainable artificial intelligence," Energy, Elsevier, vol. 262(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saafi, Khawla & Daouas, Naouel, 2019. "Energy and cost efficiency of phase change materials integrated in building envelopes under Tunisia Mediterranean climate," Energy, Elsevier, vol. 187(C).
    2. Xu, Bin & Chen, Xing-ni & Fei, Yue & Gan, Wen-tao & Pei, Gang, 2023. "Optimizing the applicability of cool paint through phase change material according to the energy consumption characteristics in different regions," Renewable Energy, Elsevier, vol. 212(C), pages 953-971.
    3. Li, Chunying & Tang, Haida, 2024. "Phase change material window for dynamic energy flow regulation: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    4. Gao, Dian-ce & Sun, Yongjun & Zhou, Chuanwen & Bu, Yu & Bao, Yan & Chai, Jiale, 2020. "Numerical and experimental study on a double-layered coating design using supplemental property particles for achieving user-desired thermal and aesthetic performance," Energy, Elsevier, vol. 211(C).
    5. Xamán, J. & Rodriguez-Ake, A. & Zavala-Guillén, I. & Hernández-Pérez, I. & Arce, J. & Sauceda, D., 2020. "Thermal performance analysis of a roof with a PCM-layer under Mexican weather conditions," Renewable Energy, Elsevier, vol. 149(C), pages 773-785.
    6. Li, Weilin & Jing, Mingyi & Li, Rufei & Gao, Junxi & Zhu, Jiayin & Li, Ruixin, 2023. "Study of the optimal placement of phase change materials in existing buildings for cooling load reduction - Take the Central Plain of China as an example," Renewable Energy, Elsevier, vol. 209(C), pages 71-84.
    7. Kirim Lee & Jihoon Seong & Youkyung Han & Won Hee Lee, 2020. "Evaluation of Applicability of Various Color Space Techniques of UAV Images for Evaluating Cool Roof Performance," Energies, MDPI, vol. 13(16), pages 1-12, August.
    8. Wang, Pengcheng & Liu, Zhongbing & Zhang, Ling & Wang, Zhe & Fan, Jianhua, 2023. "Inversion of extinction coefficient and refractive index of variable transparency solid–solid phase change material based on a hybrid model under real climatic conditions," Applied Energy, Elsevier, vol. 341(C).
    9. Singh, Aditya Kumar & Rathore, Pushpendra Kumar Singh & Sharma, R.K. & Gupta, Naveen Kumar & Kumar, Rajan, 2023. "Experimental evaluation of composite concrete incorporated with thermal energy storage material for improved thermal behavior of buildings," Energy, Elsevier, vol. 263(PA).
    10. Yan, Tian & Zhou, Xuan & Xu, Xinhua & Yu, Jinghua & Li, Xianting, 2022. "Parametric analysis on performances of the pipe-encapsulated PCM (PenPCM) wall system coupled with gravity heat-pipe and nocturnal radiant cooler," Renewable Energy, Elsevier, vol. 196(C), pages 161-180.
    11. Atefeh Tamaskani Esfehankalateh & Jack Ngarambe & Geun Young Yun, 2021. "Influence of Tree Canopy Coverage and Leaf Area Density on Urban Heat Island Mitigation," Sustainability, MDPI, vol. 13(13), pages 1-14, July.
    12. Kong, Xiangfei & Jiang, Lina & Yuan, Ye & Qiao, Xu, 2022. "Experimental study on the performance of an active novel vertical partition thermal storage wallboard based on composite phase change material with porous silica and microencapsulation," Energy, Elsevier, vol. 239(PE).
    13. Monika Gandhi & Ashok Kumar & Rajasekar Elangovan & Chandan Swaroop Meena & Kishor S. Kulkarni & Anuj Kumar & Garima Bhanot & Nishant R. Kapoor, 2020. "A Review on Shape-Stabilized Phase Change Materials for Latent Energy Storage in Buildings," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    14. Yu, Jinghua & Leng, Kangxin & Ye, Hong & Xu, Xinhua & Luo, Yongqiang & Wang, Jinbo & Yang, Xie & Yang, Qingchen & Gang, Wenjie, 2020. "Study on thermal insulation characteristics and optimized design of pipe-embedded ventilation roof with outer-layer shape-stabilized PCM in different climate zones," Renewable Energy, Elsevier, vol. 147(P1), pages 1609-1622.
    15. Mojtaba Ashour & Amir Mahdiyar & Syarmila Hany Haron, 2021. "A Comprehensive Review of Deterrents to the Practice of Sustainable Interior Architecture and Design," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    16. Ahmet Bircan Atmaca & Gülay Zorer Gedik & Andreas Wagner, 2021. "Determination of Optimum Envelope of Religious Buildings in Terms of Thermal Comfort and Energy Consumption: Mosque Cases," Energies, MDPI, vol. 14(20), pages 1-17, October.
    17. Gabriele Battista & Emanuele de Lieto Vollaro & Luca Evangelisti & Roberto de Lieto Vollaro, 2022. "Urban Overheating Mitigation Strategies Opportunities: A Case Study of a Square in Rome (Italy)," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    18. Ascione, Fabrizio & De Masi, Rosa Francesca & Santamouris, Mattheos & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2018. "Experimental and numerical evaluations on the energy penalty of reflective roofs during the heating season for Mediterranean climate," Energy, Elsevier, vol. 144(C), pages 178-199.
    19. Siti Fatihah Salleh & Ahmad Abubakar Suleiman & Hanita Daud & Mahmod Othman & Rajalingam Sokkalingam & Karl Wagner, 2023. "Tropically Adapted Passive Building: A Descriptive-Analytical Approach Using Multiple Linear Regression and Probability Models to Predict Indoor Temperature," Sustainability, MDPI, vol. 15(18), pages 1-25, September.
    20. Chen, Xing-ni & Xu, Bin & Fei, Yue & Pei, Gang, 2024. "Combination optimization, importance order of parameters and aging consequence prediction for thermal insulation coating with radiation characteristics," Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224003852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.