IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224003621.html
   My bibliography  Save this article

Preparation of a novel microencapsulated phase change material (MEPCM)/adipic acid ceramic composite and its thermal performance

Author

Listed:
  • Chang, Yunwei
  • Gu, Heng
  • Yao, Xiaoyan
  • Qing, Chunyao
  • Zou, Deqiu

Abstract

Metal-based phase change materials (PCM) have received extensive attention due to their high thermal conductivity and high volumetric heat storage density. However, their relatively low heat storage density per unit mass and leakage have limited their applications. Herein, a porous ceramic was firstly prepared using SnBi58 MEPCM (Tm = 140.8 °C) with thermal expansion void and ceramic materials as framework materials, and PMMA as pore-forming agent. Then, MEPCM/adipic acid ceramic composite was fabricated by impregnating adipic acid (Tm = 157.3 °C) with high latent heat per unit mass into the porous ceramic. The results showed that the MEPCM/adipic acid ceramic composite with 35 wt% MEPCM addition exhibited the best performance taking into account thermal conductivity and latent heat. The latent heat was 92.73 J/g, and the thermal conductivity of the composite was 2.183 W/(m·K), increased by nearly 3 times compared to pure adipic acid (0.513 W/(m·K)) and increased by 97.4% compared to the ceramic composite without MEPCM (1.1058 W/(m·K)). Furthermore, due to the presence of void in MEPCM, MEPCM/adipic acid ceramic composite exhibited good thermal cycling stability. The MEPCM/adipic acid ceramic composite with high thermal conductivity, high latent heat and high thermal reliability exhibits good applications prospects in the next generation of heat storage.

Suggested Citation

  • Chang, Yunwei & Gu, Heng & Yao, Xiaoyan & Qing, Chunyao & Zou, Deqiu, 2024. "Preparation of a novel microencapsulated phase change material (MEPCM)/adipic acid ceramic composite and its thermal performance," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003621
    DOI: 10.1016/j.energy.2024.130590
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224003621
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130590?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sakai, Hiroki & Sheng, Nan & Kurniawan, Ade & Akiyama, Tomohiro & Nomura, Takahiro, 2020. "Fabrication of heat storage pellets composed of microencapsulated phase change material for high-temperature applications," Applied Energy, Elsevier, vol. 265(C).
    2. Wei, Haiting & Xie, Xiuzhen & Li, Xiangqi & Lin, Xingshui, 2016. "Preparation and characterization of capric-myristic-stearic acid eutectic mixture/modified expanded vermiculite composite as a form-stable phase change material," Applied Energy, Elsevier, vol. 178(C), pages 616-623.
    3. Navarrete, Nuria & Mondragón, Rosa & Wen, Dongsheng & Navarro, Maria Elena & Ding, Yulong & Juliá, J. Enrique, 2019. "Thermal energy storage of molten salt –based nanofluid containing nano-encapsulated metal alloy phase change materials," Energy, Elsevier, vol. 167(C), pages 912-920.
    4. Li, Chaoen & Yu, Hang & Song, Yuan & Wang, Meng & Liu, Zhiyuan, 2020. "A n-octadecane/hierarchically porous TiO2 form-stable PCM for thermal energy storage," Renewable Energy, Elsevier, vol. 145(C), pages 1465-1473.
    5. Firth, Anton & Zhang, Bo & Yang, Aidong, 2019. "Quantification of global waste heat and its environmental effects," Applied Energy, Elsevier, vol. 235(C), pages 1314-1334.
    6. Li, Yali & Li, Jinhong & Deng, Yong & Guan, Weimin & Wang, Xiang & Qian, Tingting, 2016. "Preparation of paraffin/porous TiO2 foams with enhanced thermal conductivity as PCM, by covering the TiO2 surface with a carbon layer," Applied Energy, Elsevier, vol. 171(C), pages 37-45.
    7. Xu, Z.Y. & Wang, R.Z. & Yang, Chun, 2019. "Perspectives for low-temperature waste heat recovery," Energy, Elsevier, vol. 176(C), pages 1037-1043.
    8. Koide, Hiroaki & Kurniawan, Ade & Takahashi, Tatsuya & Kawaguchi, Takahiro & Sakai, Hiroki & Sato, Yusuke & Chiu, Justin NW. & Nomura, Takahiro, 2022. "Performance analysis of packed bed latent heat storage system for high-temperature thermal energy storage using pellets composed of micro-encapsulated phase change material," Energy, Elsevier, vol. 238(PC).
    9. Hasankhani, Arezoo & Hakimi, Seyed Mehdi, 2021. "Stochastic energy management of smart microgrid with intermittent renewable energy resources in electricity market," Energy, Elsevier, vol. 219(C).
    10. Song, Shaokun & Dong, Lijie & Zhang, Yang & Chen, Shun & Li, Qi & Guo, Yi & Deng, Sufen & Si, Shuai & Xiong, Chuanxi, 2014. "Lauric acid/intercalated kaolinite as form-stable phase change material for thermal energy storage," Energy, Elsevier, vol. 76(C), pages 385-389.
    11. Leah C. Stokes & Christopher Warshaw, 2017. "Renewable energy policy design and framing influence public support in the United States," Nature Energy, Nature, vol. 2(8), pages 1-6, August.
    12. Grace G. D. Han & Huashan Li & Jeffrey C. Grossman, 2017. "Optically-controlled long-term storage and release of thermal energy in phase-change materials," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    13. Wang, Haoran & Ran, Xiaofeng & Zhong, Yajuan & Lu, Linyuan & Lin, Jun & He, Gang & Wang, Liang & Dai, Zhimin, 2022. "Ternary chloride salt–porous ceramic composite as a high-temperature phase change material," Energy, Elsevier, vol. 238(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
    2. Miriam Benedetti & Daniele Dadi & Lorena Giordano & Vito Introna & Pasquale Eduardo Lapenna & Annalisa Santolamazza, 2021. "Design of a Database of Case Studies and Technologies to Increase the Diffusion of Low-Temperature Waste Heat Recovery in the Industrial Sector," Sustainability, MDPI, vol. 13(9), pages 1-19, May.
    3. Zhou, Yunhong & Zeng, Jiwei & Guo, Yiyou & Chen, Haobin & Bi, Tiantian & Lin, Qilang, 2023. "Three-dimensional hierarchical porous carbon surface-decorated graphitic carbon foam/stearic acid composite as high-performance shape-stabilized phase change material with desirable photothermal conve," Applied Energy, Elsevier, vol. 352(C).
    4. Maleki, Mahdi & Imani, Abolhassan & Ahmadi, Rouhollah & Banna Motejadded Emrooz, Hosein & Beitollahi, Ali, 2020. "Low-cost carbon foam as a practical support for organic phase change materials in thermal management," Applied Energy, Elsevier, vol. 258(C).
    5. Yin, Qianqian & Zhu, Ge & Wang, Ruikun & Zhao, Zhenghui, 2024. "Enhancing the thermal storage performance of biochar/paraffin composite phase change materials: Effect of oleophobic modification of biochar," Energy, Elsevier, vol. 293(C).
    6. Gu, Xiaobin & Liu, Peng & Bian, Liang & He, Huichao, 2019. "Enhanced thermal conductivity of palmitic acid/mullite phase change composite with graphite powder for thermal energy storage," Renewable Energy, Elsevier, vol. 138(C), pages 833-841.
    7. Lin, Yuancheng & Chong, Chin Hao & Ma, Linwei & Li, Zheng & Ni, Weidou, 2022. "Quantification of waste heat potential in China: A top-down Societal Waste Heat Accounting Model," Energy, Elsevier, vol. 261(PB).
    8. Zhang, Xiaoguang & Yin, Zhaoyu & Meng, Dezhi & Huang, Zhaohui & Wen, Ruilong & Huang, Yaoting & Min, Xin & Liu, Yangai & Fang, Minghao & Wu, Xiaowen, 2017. "Shape-stabilized composite phase change materials with high thermal conductivity based on stearic acid and modified expanded vermiculite," Renewable Energy, Elsevier, vol. 112(C), pages 113-123.
    9. Wan Rashidi Bin Wan Ramli & Apostolos Pesyridis & Dhrumil Gohil & Fuhaid Alshammari, 2020. "Organic Rankine Cycle Waste Heat Recovery for Passenger Hybrid Electric Vehicles," Energies, MDPI, vol. 13(17), pages 1-27, September.
    10. Rathore, Pushpendra Kumar Singh & Shukla, Shailendra kumar, 2021. "Improvement in thermal properties of PCM/Expanded vermiculite/expanded graphite shape stabilized composite PCM for building energy applications," Renewable Energy, Elsevier, vol. 176(C), pages 295-304.
    11. Sarı, Ahmet & Al-Ahmed, Amir & Bicer, Alper & Al-Sulaiman, Fahad A. & Hekimoğlu, Gökhan, 2019. "Investigation of thermal properties and enhanced energy storage/release performance of silica fume/myristic acid composite doped with carbon nanotubes," Renewable Energy, Elsevier, vol. 140(C), pages 779-788.
    12. Walter, Kara A. & Thacher, Jennifer & Chermak, Janie M., 2023. "Examining willingness to pay for energy futures in a fossil and renewable energy-rich locale," Energy Policy, Elsevier, vol. 181(C).
    13. Ghoreishi-Madiseh, Seyed Ali & Kalantari, Hosein & Kuyuk, Ali Fahrettin & Sasmito, Agus P., 2019. "A new model to analyze performance of mine exhaust heat recovery systems with coupled heat exchangers," Applied Energy, Elsevier, vol. 256(C).
    14. Shaikh Zishan & Altaf Hossain Molla & Haroon Rashid & Kok Hoe Wong & Ahmad Fazlizan & Molla Shahadat Hossain Lipu & Mohd Tariq & Omar Mutab Alsalami & Mahidur R. Sarker, 2023. "Comprehensive Analysis of Kinetic Energy Recovery Systems for Efficient Energy Harnessing from Unnaturally Generated Wind Sources," Sustainability, MDPI, vol. 15(21), pages 1-18, October.
    15. Komerath, Narayanan M. & Deepak, Ravi, 2023. "A reversible mid-stratospheric architecture to reduce insolation," Applied Energy, Elsevier, vol. 348(C).
    16. Jani, Ali & Karimi, Hamid & Jadid, Shahram, 2022. "Two-layer stochastic day-ahead and real-time energy management of networked microgrids considering integration of renewable energy resources," Applied Energy, Elsevier, vol. 323(C).
    17. Parrish Bergquist & Christopher Warshaw, 2023. "How climate policy commitments influence energy systems and the economies of US states," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Nicholas A. Mailloux & Colleen P. Henegan & Dorothy Lsoto & Kristen P. Patterson & Paul C. West & Jonathan A. Foley & Jonathan A. Patz, 2021. "Climate Solutions Double as Health Interventions," IJERPH, MDPI, vol. 18(24), pages 1-15, December.
    19. Hu, Yige & Wang, Hang & Chen, Hu & Ding, Yang & Liu, Changtian & Jiang, Feng & Ling, Xiang, 2023. "A novel hydrated salt-based phase change material for medium- and low-thermal energy storage," Energy, Elsevier, vol. 274(C).
    20. Long, Rui & Zhao, Yanan & Li, Mingliang & Pan, Yao & Liu, Zhichun & Liu, Wei, 2021. "Evaluations of adsorbents and salt-methanol solutions for low-grade heat driven osmotic heat engines," Energy, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.