IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i9p5223-d550070.html
   My bibliography  Save this article

Design of a Database of Case Studies and Technologies to Increase the Diffusion of Low-Temperature Waste Heat Recovery in the Industrial Sector

Author

Listed:
  • Miriam Benedetti

    (Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy)

  • Daniele Dadi

    (Department of Enterprise Engineering, University of Rome Tor Vergata, 00133 Rome, Italy)

  • Lorena Giordano

    (Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy)

  • Vito Introna

    (Department of Enterprise Engineering, University of Rome Tor Vergata, 00133 Rome, Italy)

  • Pasquale Eduardo Lapenna

    (Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy
    Department of Mechanical and Aerospace Engineering, University of Rome “La Sapienza”, 00184 Rome, Italy)

  • Annalisa Santolamazza

    (DEIM School of Engineering, University of Tuscia, 01100 Viterbo, Italy)

Abstract

The recovery of waste heat is a fundamental means of achieving the ambitious medium- and long-term targets set by European and international directives. Despite the large availability of waste heat, especially at low temperatures (<250 °C), the implementation rate of heat recovery interventions is still low, mainly due to non-technical barriers. To overcome this limitation, this work aims to develop two distinct databases containing waste heat recovery case studies and technologies as a novel tool to enhance knowledge transfer in the industrial sector. Through an in-depth analysis of the scientific literature, the two databases’ structures were developed, defining fields and information to collect, and then a preliminary population was performed. Both databases were validated by interacting with companies which operate in the heat recovery technology market and which are possible users of the tools. Those proposed are the first example in the literature of databases completely focused on low-temperature waste heat recovery in the industrial sector and able to provide detailed information on heat exchange and the technologies used. The tools proposed are two key elements in supporting companies in all the phases of a heat recovery intervention: from identifying waste heat to choosing the best technology to be adopted.

Suggested Citation

  • Miriam Benedetti & Daniele Dadi & Lorena Giordano & Vito Introna & Pasquale Eduardo Lapenna & Annalisa Santolamazza, 2021. "Design of a Database of Case Studies and Technologies to Increase the Diffusion of Low-Temperature Waste Heat Recovery in the Industrial Sector," Sustainability, MDPI, vol. 13(9), pages 1-19, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:5223-:d:550070
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/9/5223/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/9/5223/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Broberg Viklund, Sarah & Karlsson, Magnus, 2015. "Industrial excess heat use: Systems analysis and CO2 emissions reduction," Applied Energy, Elsevier, vol. 152(C), pages 189-197.
    2. Xu, Z.Y. & Wang, R.Z. & Yang, Chun, 2019. "Perspectives for low-temperature waste heat recovery," Energy, Elsevier, vol. 176(C), pages 1037-1043.
    3. Tiwari, Ramji & Babu, N. Ramesh, 2016. "Recent developments of control strategies for wind energy conversion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 268-285.
    4. Janie Ling Chin & Huashan Bao & Zhiwei Ma & Wendy Taylor & Anthony Paul Roskilly, 2019. "State-of-the-Art Technologies on Low-Grade Heat Recovery and Utilization in Industry," Chapters, in: Ibrahim H. Al-Bahadly (ed.), Energy Conversion - Current Technologies and Future Trends, IntechOpen.
    5. Wheatcroft, Edward & Wynn, Henry P. & Lygnerud, Kristina & Bonvicini, Giorgio & Bonvicini, Giorgio & Lenote, Daniela, 2020. "The role of low temperature waste heat recovery in achieving 2050 goals: a policy positioning paper," LSE Research Online Documents on Economics 104136, London School of Economics and Political Science, LSE Library.
    6. Kumar, Yogesh & Ringenberg, Jordan & Depuru, Soma Shekara & Devabhaktuni, Vijay K. & Lee, Jin Woo & Nikolaidis, Efstratios & Andersen, Brett & Afjeh, Abdollah, 2016. "Wind energy: Trends and enabling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 209-224.
    7. William A. Braff & Joshua M. Mueller & Jessika E. Trancik, 2016. "Value of storage technologies for wind and solar energy," Nature Climate Change, Nature, vol. 6(10), pages 964-969, October.
    8. Okot, David Kilama, 2013. "Review of small hydropower technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 515-520.
    9. Forman, Clemens & Muritala, Ibrahim Kolawole & Pardemann, Robert & Meyer, Bernd, 2016. "Estimating the global waste heat potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1568-1579.
    10. Firth, Anton & Zhang, Bo & Yang, Aidong, 2019. "Quantification of global waste heat and its environmental effects," Applied Energy, Elsevier, vol. 235(C), pages 1314-1334.
    11. Brückner, Sarah & Liu, Selina & Miró, Laia & Radspieler, Michael & Cabeza, Luisa F. & Lävemann, Eberhard, 2015. "Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies," Applied Energy, Elsevier, vol. 151(C), pages 157-167.
    12. Edward Wheatcroft & Henry Wynn & Kristina Lygnerud & Giorgio Bonvicini & Daniela Leonte, 2020. "The Role of Low Temperature Waste Heat Recovery in Achieving 2050 Goals: A Policy Positioning Paper," Energies, MDPI, vol. 13(8), pages 1-19, April.
    13. Annalisa Santolamazza & Daniele Dadi & Vito Introna, 2021. "A Data-Mining Approach for Wind Turbine Fault Detection Based on SCADA Data Analysis Using Artificial Neural Networks," Energies, MDPI, vol. 14(7), pages 1-25, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Yuancheng & Chong, Chin Hao & Ma, Linwei & Li, Zheng & Ni, Weidou, 2022. "Quantification of waste heat potential in China: A top-down Societal Waste Heat Accounting Model," Energy, Elsevier, vol. 261(PB).
    2. Hong, Gui-Bing & Pan, Tze-Chin & Chan, David Yih-Liang & Liu, I-Hung, 2020. "Bottom-up analysis of industrial waste heat potential in Taiwan," Energy, Elsevier, vol. 198(C).
    3. Couvreur, Kenny & Beyne, Wim & De Paepe, Michel & Lecompte, Steven, 2020. "Hot water storage for increased electricity production with organic Rankine cycle from intermittent residual heat sources in the steel industry," Energy, Elsevier, vol. 200(C).
    4. Daniele Dadi & Vito Introna & Miriam Benedetti, 2022. "Decarbonization of Heat through Low-Temperature Waste Heat Recovery: Proposal of a Tool for the Preliminary Evaluation of Technologies in the Industrial Sector," Sustainability, MDPI, vol. 14(19), pages 1-28, October.
    5. Broniszewski, Mariusz & Werle, Sebastian, 2020. "CO2 reduction methods and evaluation of proposed energy efficiency improvements in Poland’s large industrial plant," Energy, Elsevier, vol. 202(C).
    6. Dai, Baomin & Feng, Yining & Liu, Shengchun & Yao, Xiaole & Zhang, Jianing & Wang, Bowen & Wang, Dabiao, 2023. "Dual pressure condensation heating high temperature heat pump using eco-friendly working fluid mixtures for industrial heating processes: 4E analysis," Energy, Elsevier, vol. 283(C).
    7. Yang, Jing & Zhang, Zhiyong & Hong, Ming & Yang, Mingwan & Chen, Jiayu, 2020. "An oligarchy game model for the mobile waste heat recovery energy supply chain," Energy, Elsevier, vol. 210(C).
    8. Hrvoje Dorotić & Kristijan Čuljak & Josip Miškić & Tomislav Pukšec & Neven Duić, 2022. "Technical and Economic Assessment of Supermarket and Power Substation Waste Heat Integration into Existing District Heating Systems," Energies, MDPI, vol. 15(5), pages 1-29, February.
    9. Mateu-Royo, Carlos & Navarro-Esbrí, Joaquín & Mota-Babiloni, Adrián & Molés, Francisco & Amat-Albuixech, Marta, 2019. "Experimental exergy and energy analysis of a novel high-temperature heat pump with scroll compressor for waste heat recovery," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Zhicheng Lin & Song Zheng & Zhicheng Chen & Rong Zheng & Wang Zhang, 2019. "Application Research of the Parallel System Theory and the Data Engine Approach in Wind Energy Conversion System," Energies, MDPI, vol. 12(5), pages 1-20, March.
    11. Chang, Yunwei & Gu, Heng & Yao, Xiaoyan & Qing, Chunyao & Zou, Deqiu, 2024. "Preparation of a novel microencapsulated phase change material (MEPCM)/adipic acid ceramic composite and its thermal performance," Energy, Elsevier, vol. 292(C).
    12. Xianliang Liu & Haodong Chen & Jianyi Huang & Kaiming Qiao & Ziyuan Yu & Longlong Xie & Raju V. Ramanujan & Fengxia Hu & Ke Chu & Yi Long & Hu Zhang, 2023. "High-performance thermomagnetic generator controlled by a magnetocaloric switch," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    14. Adriano da S. Marques & Monica Carvalho & Álvaro A. V. Ochoa & Ronelly J. Souza & Carlos A. C. dos Santos, 2020. "Exergoeconomic Assessment of a Compact Electricity-Cooling Cogeneration Unit," Energies, MDPI, vol. 13(20), pages 1-18, October.
    15. Seung Choi, Han & Hur, Sunghoon & Kumar, Ajeet & Song, Hyunseok & Min Baik, Jeong & Song, Hyun-Cheol & Ryu, Jungho, 2023. "Continuous pyroelectric energy generation with cyclic magnetic phase transition for low-grade thermal energy harvesting," Applied Energy, Elsevier, vol. 344(C).
    16. Rodríguez, R. & Bello, V.G. & Díaz-Aguado, M.B., 2017. "Application of eco-efficiency in a coal-burning power plant benefitting both the environment and citizens: Design of a ‘city water heating’ system," Applied Energy, Elsevier, vol. 189(C), pages 789-799.
    17. Zuberi, M. Jibran S. & Bless, Frédéric & Chambers, Jonathan & Arpagaus, Cordin & Bertsch, Stefan S. & Patel, Martin K., 2018. "Excess heat recovery: An invisible energy resource for the Swiss industry sector," Applied Energy, Elsevier, vol. 228(C), pages 390-408.
    18. Chumnanwat, Suppanat & Watanabe, Yuto & Taniguchi, Naoko & Higashi, Hidenori & Kodama, Akio & Seto, Takafumi & Otani, Yoshio & Kumita, Mikio, 2020. "Pore structure control of anodized alumina film and sorption properties of water vapor on CaCl2-aluminum composites," Energy, Elsevier, vol. 208(C).
    19. Ieva Pakere & Dagnija Blumberga & Anna Volkova & Kertu Lepiksaar & Agate Zirne, 2023. "Valorisation of Waste Heat in Existing and Future District Heating Systems," Energies, MDPI, vol. 16(19), pages 1-22, September.
    20. Giovanni Manente & Mário Costa, 2020. "On the Conceptual Design of Novel Supercritical CO 2 Power Cycles for Waste Heat Recovery," Energies, MDPI, vol. 13(2), pages 1-31, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:5223-:d:550070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.