IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipas0360544221019034.html
   My bibliography  Save this article

Study on mechanical stress of semicircular and rectangular channels in printed circuit heat exchangers

Author

Listed:
  • Xu, Zirui
  • Chen, Wangnan
  • Lian, Jie
  • Yang, Xiongwei
  • Wang, Qiuwang
  • Chen, Yitung
  • Ma, Ting

Abstract

Recuperator and precooler are key components of supercritical CO2 Brayton cycle. One of promising candidates is printed circuit heat exchanger (PCHE) due to its high compactness and heat transfer performance. However, both of them operate at high pressure, which is a great challenge for their safety. Therefore, accurate and quick mechanical stress analysis is important for PCHE design. In this work, a simplified mechanical stress method based on homogenization method is proposed for PCHE. An optimized rectangular channel, which has the same mechanical characteristics with a semicircular channel is proposed. Then the PCHE numerical model is constructed, and the mechanical stress of PCHEs with semicircular and rectangular channels is examined by elastic stress analysis. The results show that the maximum stresses of the semicircular channel, simplified rectangular channel and optimized rectangular channel are 151.6 MPa, 253.0 MPa and 184.3 MPa, respectively. The mechanical characteristics of the optimized rectangular channel are close to the corresponding semicircular channel, which can improve the design accuracy and is benefit for the weight and volume reduction of PCHE.

Suggested Citation

  • Xu, Zirui & Chen, Wangnan & Lian, Jie & Yang, Xiongwei & Wang, Qiuwang & Chen, Yitung & Ma, Ting, 2022. "Study on mechanical stress of semicircular and rectangular channels in printed circuit heat exchangers," Energy, Elsevier, vol. 238(PA).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221019034
    DOI: 10.1016/j.energy.2021.121655
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221019034
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121655?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Jinliang & Liu, Chao & Sun, Enhui & Xie, Jian & Li, Mingjia & Yang, Yongping & Liu, Jizhen, 2019. "Perspective of S−CO2 power cycles," Energy, Elsevier, vol. 186(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Yang & Li, Yingxiao & Wang, Jinghan & Tam, Lapmou & Chen, Yitung & Wang, Qiuwang & Ma, Ting, 2023. "Multi-objective optimization of printed circuit heat exchanger used for hydrogen cooler by exergoeconomic method," Energy, Elsevier, vol. 262(PA).
    2. Li, Zhen & Lu, Daogang & Wang, Zhichao & Cao, Qiong, 2023. "Analysis on flow and heat transfer performance of SCO2 in airfoil channels with different fin angles of attack," Energy, Elsevier, vol. 282(C).
    3. Khoshvaght-Aliabadi, Morteza & Ghodrati, Parvaneh & Mahian, Omid & Kang, Yong Tae, 2024. "CFD study of rib-enhanced printed circuit heat exchangers for precoolers in solar power plants' supercritical CO2 cycle," Energy, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Dianqiang & Zhang, Dalin & Li, Xinyu & Wang, Shibao & Wang, Chenglong & Qin, Hao & Guo, Yanwen & Tian, Wenxi & Su, G.H. & Qiu, Suizheng, 2022. "Fluoride-salt-cooled high-temperature reactors: Review of historical milestones, research status, challenges, and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Zhao, Bingtao & Yao, Jiacheng & Su, Yaxin, 2023. "Performance response to operating-load fluctuations for Sub-megawatt-scale recuperated supercritical CO2 Brayton cycles: Characteristics and improvement," Renewable Energy, Elsevier, vol. 206(C), pages 686-693.
    3. Linares, José I. & Montes, María J. & Cantizano, Alexis & Sánchez, Consuelo, 2020. "A novel supercritical CO2 recompression Brayton power cycle for power tower concentrating solar plants," Applied Energy, Elsevier, vol. 263(C).
    4. He, Ya-Ling & Qiu, Yu & Wang, Kun & Yuan, Fan & Wang, Wen-Qi & Li, Ming-Jia & Guo, Jia-Qi, 2020. "Perspective of concentrating solar power," Energy, Elsevier, vol. 198(C).
    5. Liu, Chao & Xu, Jinliang & Li, Mingjia & Wang, Qingyang & Liu, Guanglin, 2022. "The comprehensive solution to decrease cooling wall temperatures of sCO2 boiler for coal fired power plant," Energy, Elsevier, vol. 252(C).
    6. Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2022. "A review on integrated design and off-design operation of solar power tower system with S–CO2 Brayton cycle," Energy, Elsevier, vol. 246(C).
    7. Liu, Zecheng & Zhong, Wenqi & Shao, Yingjuan & Liu, Xuejiao, 2020. "Exergy analysis of supercritical CO2 coal-fired circulating fluidized bed boiler system based on the combustion process," Energy, Elsevier, vol. 208(C).
    8. Liu, Zecheng & Zhong, Wenqi & Shao, Yingjuan & Liu, Xuejiao, 2022. "Conceptual design of a small-capacity supercritical CO2 coal-fired circulating fluidized bed boiler by an improved design calculation method," Energy, Elsevier, vol. 255(C).
    9. Khoshgoftar Manesh, M.H. & Mehrabian, M.J. & Nourpour, M. & Onishi, V.C., 2023. "Risk and 4E analyses and optimization of a novel solar-natural gas-driven polygeneration system based on Integration of Gas Turbine–SCO2–ORC-solar PV-PEM electrolyzer," Energy, Elsevier, vol. 263(PD).
    10. Kareem, Olayinka Idowu, 2022. "Fruit safety regulations in the transatlantic region: How are Africa’s exports faring with the regulations?," Journal of Policy Modeling, Elsevier, vol. 44(5), pages 886-902.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221019034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.