IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics0360544224000483.html
   My bibliography  Save this article

CFD-DEM simulation of cyclone self-rotation drying: Particle high-speed self-rotation and heat transfer

Author

Listed:
  • Liang, Yanan
  • Cheng, Tingting
  • Li, Qiqi
  • Liu, Junjie
  • Li, Qiong
  • Li, Jianping
  • Ma, Shenggui
  • Jiang, Xia
  • Wang, Hualin
  • Fu, Pengbo

Abstract

Cyclone self-rotation drying (CSRD) has been demonstrated to have the outstanding advantage of low energy consumption in drying field due to the ability of non-phase change separation of liquid in wet particles. Particle high-speed self-rotation are key factors that affect the energy consumption and efficiency of CSRD, but their laws and regulation methods are still unclear. In this study, under the framework of Eulerian-Lagrangian method, Eulerian model and Reynolds Stress Model (RSM) were adopted, and computational fluid dynamics (CFD) and discrete element method (DEM) coupled simulation was established to systematically investigate the effects of operating parameters on sludge particle self-rotation and heat transfer in a 200-mm-diameter CSRD device. The particle self-rotation and revolution speeds were found to decrease with increasing particle size and feeding rate. An average self-rotation speed of 5217.8 rad/s was observed for 1 mm particles at a gas velocity of 10 m/s and a feeding rate of 50 kg/h, when the gas velocity increased to 20 m/s, the self-rotation speed increased about 888.4 rad/s. These operating parameters were also found to affect particle residence time and temperature, smaller particles have better heat transfer performance. This study provides theoretical support for application and optimization of CSRD devices.

Suggested Citation

  • Liang, Yanan & Cheng, Tingting & Li, Qiqi & Liu, Junjie & Li, Qiong & Li, Jianping & Ma, Shenggui & Jiang, Xia & Wang, Hualin & Fu, Pengbo, 2024. "CFD-DEM simulation of cyclone self-rotation drying: Particle high-speed self-rotation and heat transfer," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544224000483
    DOI: 10.1016/j.energy.2024.130277
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224000483
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130277?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fu, Pengbo & Yu, Hao & Li, Qiqi & Cheng, Tingting & Zhang, Fangzheng & Yang, Tao & Huang, Yuan & Li, Jianping & Fang, Xiangchen & Xiu, Guangli & Wang, Hualin, 2022. "Cyclone rotational drying of lignite based on particle high-speed self-rotation: Lower carrier gas temperature and shorter residence time," Energy, Elsevier, vol. 244(PB).
    2. Maître, T. & Amet, E. & Pellone, C., 2013. "Modeling of the flow in a Darrieus water turbine: Wall grid refinement analysis and comparison with experiments," Renewable Energy, Elsevier, vol. 51(C), pages 497-512.
    3. Shao, Yali & Wang, Xudong & Jin, Baosheng, 2022. "Numerical investigation of hydrodynamics and cluster characteristics in a chemical looping combustion system," Energy, Elsevier, vol. 244(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balduzzi, Francesco & Bianchini, Alessandro & Ferrara, Giovanni & Ferrari, Lorenzo, 2016. "Dimensionless numbers for the assessment of mesh and timestep requirements in CFD simulations of Darrieus wind turbines," Energy, Elsevier, vol. 97(C), pages 246-261.
    2. Zhang, Yanfeng & Li, Qing'an & Zhu, Xinyu & Song, Xiaowen & Cai, Chang & Zhou, Teng & Kamada, Yasunari & Maeda, Takao & Wang, Ye & Guo, Zhiping, 2022. "Effect of the bionic blade on the flow field of a straight-bladed vertical axis wind turbine," Energy, Elsevier, vol. 258(C).
    3. Omar D. Lopez Mejia & Jhon J. Quiñones & Santiago Laín, 2018. "RANS and Hybrid RANS-LES Simulations of an H-Type Darrieus Vertical Axis Water Turbine," Energies, MDPI, vol. 11(9), pages 1-17, September.
    4. Runqiang Zhang & Zhenwei Huang & Lei Tan & Yuchuan Wang & Erqi Wang, 2020. "Energy Performance and Radial Force of Vertical Axis Darrieus Turbine for Ocean Energy," Energies, MDPI, vol. 13(20), pages 1-15, October.
    5. Stefania Zanforlin & Fulvio Buzzi & Marika Francesconi, 2019. "Performance Analysis of Hydrofoil Shaped and Bi-Directional Diffusers for Cross Flow Tidal Turbines in Single and Double-Rotor Configurations," Energies, MDPI, vol. 12(2), pages 1-25, January.
    6. Zanforlin, Stefania & Deluca, Stefano, 2018. "Effects of the Reynolds number and the tip losses on the optimal aspect ratio of straight-bladed Vertical Axis Wind Turbines," Energy, Elsevier, vol. 148(C), pages 179-195.
    7. Pierre-Luc Delafin & François Deniset & Jacques André Astolfi & Frédéric Hauville, 2021. "Performance Improvement of a Darrieus Tidal Turbine with Active Variable Pitch," Energies, MDPI, vol. 14(3), pages 1-18, January.
    8. Delafin, P.-L. & Nishino, T. & Kolios, A. & Wang, L., 2017. "Comparison of low-order aerodynamic models and RANS CFD for full scale 3D vertical axis wind turbines," Renewable Energy, Elsevier, vol. 109(C), pages 564-575.
    9. Lucy Massie & Pablo Ouro & Thorsten Stoesser & Qianyu Luo, 2019. "An Actuator Surface Model to Simulate Vertical Axis Turbines," Energies, MDPI, vol. 12(24), pages 1-16, December.
    10. Yang, P. & Xiang, J. & Fang, F. & Pain, C.C., 2019. "A fidelity fluid-structure interaction model for vertical axis tidal turbines in turbulence flows," Applied Energy, Elsevier, vol. 236(C), pages 465-477.
    11. Marsh, Philip & Ranmuthugala, Dev & Penesis, Irene & Thomas, Giles, 2015. "Numerical investigation of the influence of blade helicity on the performance characteristics of vertical axis tidal turbines," Renewable Energy, Elsevier, vol. 81(C), pages 926-935.
    12. Velasco, D. & López Mejia, O. & Laín, S., 2017. "Numerical simulations of active flow control with synthetic jets in a Darrieus turbine," Renewable Energy, Elsevier, vol. 113(C), pages 129-140.
    13. Hu, Wenyu & E, Jiaqiang & Zhang, Feng & Chen, Jingwei & Ma, Yinjie & Leng, Erwei, 2022. "Investigation on cooperative mechanism between convective wind energy harvesting and dust collection during vehicle driving on the highway," Energy, Elsevier, vol. 260(C).
    14. Daróczy, László & Janiga, Gábor & Thévenin, Dominique, 2016. "Analysis of the performance of a H-Darrieus rotor under uncertainty using Polynomial Chaos Expansion," Energy, Elsevier, vol. 113(C), pages 399-412.
    15. Zhu, Xinyu & Guo, Zhiping & Zhang, Yanfeng & Song, Xiaowen & Cai, Chang & Kamada, Yasunari & Maeda, Takao & Li, Qing'an, 2022. "Numerical study of aerodynamic characteristics on a straight-bladed vertical axis wind turbine with bionic blades," Energy, Elsevier, vol. 239(PE).
    16. Atlaschian, Omid & Metzger, M., 2021. "Numerical model of vertical axis wind turbine performance in realistic gusty wind conditions," Renewable Energy, Elsevier, vol. 165(P1), pages 211-223.
    17. Santiago Laín & Manuel A. Taborda & Omar D. López, 2018. "Numerical Study of the Effect of Winglets on the Performance of a Straight Blade Darrieus Water Turbine," Energies, MDPI, vol. 11(2), pages 1-24, January.
    18. Guanghao Li & Guoying Wu & Lei Tan & Honggang Fan, 2023. "A Review: Design and Optimization Approaches of the Darrieus Water Turbine," Sustainability, MDPI, vol. 15(14), pages 1-28, July.
    19. John M. Crooks & Rodward L. Hewlin & Wesley B. Williams, 2022. "Computational Design Analysis of a Hydrokinetic Horizontal Parallel Stream Direct Drive Counter-Rotating Darrieus Turbine System: A Phase One Design Analysis Study," Energies, MDPI, vol. 15(23), pages 1-25, November.
    20. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 108(C), pages 502-522.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544224000483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.