IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v246y2022ics0360544222003413.html
   My bibliography  Save this article

Energy, economic and environmental dynamic response characteristics of organic Rankine cycle (ORC) system under different driving cycles

Author

Listed:
  • Ping, Xu
  • Yang, Fubin
  • Zhang, Hongguang
  • Xing, Chengda
  • Wang, Chongyao
  • Zhang, Wujie
  • Wang, Yan

Abstract

Internal combustion (IC) engine as the main power source of vehicle, its energy saving and emission reduction is of great significance to alleviate the energy crisis. Organic Rankine cycle (ORC) system has a good prospect in the field of waste heat recovery of IC engine. However, in the actual operation of the vehicle, the hysteresis time, time-varying and uncertainty of ORC system are more obvious. Moreover, under the influence of the fluctuation of IC engine and the hysteresis time of ORC system, the performance of the system is heavily dependent on the change of operating parameters. This paper firstly constructs four key models of power system, waste heat recovery system, chassis and driving cycle. Then, the driving cycle-based vehicle-ORC combined system model is proposed. From the perspective of thermodynamic performance, economic performance and environmental impact, the dynamic response characteristics of ORC system performance and operating parameters under real driving cycles are systematically evaluated. The performance of ORC system can be improved by 9.25–17.72% with the increase of the large speed gradient. The hysteresis time of ORC system is 16.6–144.3 s. Hysteresis time and performance degradation will become more serious with the superposition of decrease of the large speed gradient, low speed and idle speed. The hysteresis time under the influence of superposition is up to 150.4–295.3 s. There is also a 39.59–62.45% decline in performance. The analysis of dynamic characteristics of ORC system under complex real driving cycles can provide useful guidance for practical engineering application of vehicle ORC system.

Suggested Citation

  • Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Wang, Chongyao & Zhang, Wujie & Wang, Yan, 2022. "Energy, economic and environmental dynamic response characteristics of organic Rankine cycle (ORC) system under different driving cycles," Energy, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:energy:v:246:y:2022:i:c:s0360544222003413
    DOI: 10.1016/j.energy.2022.123438
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222003413
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123438?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiménez-Arreola, Manuel & Wieland, Christoph & Romagnoli, Alessandro, 2019. "Direct vs indirect evaporation in Organic Rankine Cycle (ORC) systems: A comparison of the dynamic behavior for waste heat recovery of engine exhaust," Applied Energy, Elsevier, vol. 242(C), pages 439-452.
    2. Hoang, Anh Tuan, 2018. "Waste heat recovery from diesel engines based on Organic Rankine Cycle," Applied Energy, Elsevier, vol. 231(C), pages 138-166.
    3. Yu, Guopeng & Shu, Gequn & Tian, Hua & Wei, Haiqiao & Liu, Lina, 2013. "Simulation and thermodynamic analysis of a bottoming Organic Rankine Cycle (ORC) of diesel engine (DE)," Energy, Elsevier, vol. 51(C), pages 281-290.
    4. Shu, Gequn & Zhao, Mingru & Tian, Hua & Wei, Haiqiao & Liang, Xingyu & Huo, Yongzhan & Zhu, Weijie, 2016. "Experimental investigation on thermal OS/ORC (Oil Storage/Organic Rankine Cycle) system for waste heat recovery from diesel engine," Energy, Elsevier, vol. 107(C), pages 693-706.
    5. Chen Bei & Hongguang Zhang & Fubin Yang & Songsong Song & Enhua Wang & Hao Liu & Ying Chang & Hongjin Wang & Kai Yang, 2015. "Performance Analysis of an Evaporator for a Diesel Engine–Organic Rankine Cycle (ORC) Combined System and Influence of Pressure Drop on the Diesel Engine Operating Characteristics," Energies, MDPI, vol. 8(6), pages 1-28, June.
    6. Zhang, Ye-Qiang & Wu, Yu-Ting & Xia, Guo-Dong & Ma, Chong-Fang & Ji, Wei-Ning & Liu, Shan-Wei & Yang, Kai & Yang, Fu-Bin, 2014. "Development and experimental study on organic Rankine cycle system with single-screw expander for waste heat recovery from exhaust of diesel engine," Energy, Elsevier, vol. 77(C), pages 499-508.
    7. Lu, Yiji & Roskilly, Anthony Paul & Yu, Xiaoli & Jiang, Long & Chen, Longfei, 2018. "Technical feasibility study of scroll-type rotary gasoline engine: A compact and efficient small-scale Humphrey cycle engine," Applied Energy, Elsevier, vol. 221(C), pages 67-74.
    8. Ping, Xu & Yao, Baofeng & Zhang, Hongguang & Yang, Fubin, 2021. "Thermodynamic analysis and high-dimensional evolutionary many-objective optimization of dual loop organic Rankine cycle (DORC) for CNG engine waste heat recovery," Energy, Elsevier, vol. 236(C).
    9. Tian, Hua & Shu, Gequn & Wei, Haiqiao & Liang, Xingyu & Liu, Lina, 2012. "Fluids and parameters optimization for the organic Rankine cycles (ORCs) used in exhaust heat recovery of Internal Combustion Engine (ICE)," Energy, Elsevier, vol. 47(1), pages 125-136.
    10. Chatzopoulou, Maria Anna & Simpson, Michael & Sapin, Paul & Markides, Christos N., 2019. "Off-design optimisation of organic Rankine cycle (ORC) engines with piston expanders for medium-scale combined heat and power applications," Applied Energy, Elsevier, vol. 238(C), pages 1211-1236.
    11. Yang, Fubin & Zhang, Hongguang & Song, Songsong & Bei, Chen & Wang, Hongjin & Wang, Enhua, 2015. "Thermoeconomic multi-objective optimization of an organic Rankine cycle for exhaust waste heat recovery of a diesel engine," Energy, Elsevier, vol. 93(P2), pages 2208-2228.
    12. Spinelli, Andrea & Cammi, Giorgia & Conti, Camilla Cecilia & Gallarini, Simone & Zocca, Marta & Cozzi, Fabio & Gaetani, Paolo & Dossena, Vincenzo & Guardone, Alberto, 2019. "Experimental observation and thermodynamic modeling of non-ideal expanding flows of siloxane MDM vapor for ORC applications," Energy, Elsevier, vol. 168(C), pages 285-294.
    13. Moreira, L.F. & Arrieta, F.R.P., 2019. "Thermal and economic assessment of organic Rankine cycles for waste heat recovery in cement plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    14. Usman, Muhammad & Imran, Muhammad & Yang, Youngmin & Lee, Dong Hyun & Park, Byung-Sik, 2017. "Thermo-economic comparison of air-cooled and cooling tower based Organic Rankine Cycle (ORC) with R245fa and R1233zde as candidate working fluids for different geographical climate conditions," Energy, Elsevier, vol. 123(C), pages 353-366.
    15. Xie, Hui & Yang, Can, 2013. "Dynamic behavior of Rankine cycle system for waste heat recovery of heavy duty diesel engines under driving cycle," Applied Energy, Elsevier, vol. 112(C), pages 130-141.
    16. Shu, Gequn & Wang, Xuan & Tian, Hua & Liu, Peng & Jing, Dongzhan & Li, Xiaoya, 2017. "Scan of working fluids based on dynamic response characters for Organic Rankine Cycle using for engine waste heat recovery," Energy, Elsevier, vol. 133(C), pages 609-620.
    17. Liu, Qiang & Shen, Aijing & Duan, Yuanyuan, 2015. "Parametric optimization and performance analyses of geothermal organic Rankine cycles using R600a/R601a mixtures as working fluids," Applied Energy, Elsevier, vol. 148(C), pages 410-420.
    18. Oh, Jinwoo & Jeong, Hoyoung & Lee, Hoseong, 2021. "Experimental and numerical analysis on low-temperature off-design organic Rankine cycle in perspective of mass conservation," Energy, Elsevier, vol. 234(C).
    19. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Zhang, Jian & Zhang, Wujie & Song, Gege, 2021. "Introducing machine learning and hybrid algorithm for prediction and optimization of multistage centrifugal pump in an ORC system," Energy, Elsevier, vol. 222(C).
    20. Song, Jian & Gu, Chun-wei, 2015. "Performance analysis of a dual-loop organic Rankine cycle (ORC) system with wet steam expansion for engine waste heat recovery," Applied Energy, Elsevier, vol. 156(C), pages 280-289.
    21. Yang, Fubin & Zhang, Hongguang & Bei, Chen & Song, Songsong & Wang, Enhua, 2015. "Parametric optimization and performance analysis of ORC (organic Rankine cycle) for diesel engine waste heat recovery with a fin-and-tube evaporator," Energy, Elsevier, vol. 91(C), pages 128-141.
    22. Li, Jian & Yang, Zhen & Hu, Shuozhuo & Duan, Yuanyuan, 2021. "Influences of fluid corrosivity and heat exchanger materials on design and thermo-economic performance of organic Rankine cycle systems," Energy, Elsevier, vol. 228(C).
    23. Yang, Fubin & Cho, Heejin & Zhang, Hongguang & Zhang, Jian, 2017. "Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery," Applied Energy, Elsevier, vol. 205(C), pages 1100-1118.
    24. Songsong Song & Hongguang Zhang & Rui Zhao & Fanxiao Meng & Hongda Liu & Jingfu Wang & Baofeng Yao, 2017. "Simulation and Performance Analysis of Organic Rankine Systems for Stationary Compressed Natural Gas Engine," Energies, MDPI, vol. 10(4), pages 1-23, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Yu, Mingzhe & Wang, Yan, 2023. "Investigation and multi-objective optimization of vehicle engine-organic Rankine cycle (ORC) combined system in different driving conditions," Energy, Elsevier, vol. 263(PB).
    2. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Zhang, Jian & Xing, Chengda & Yan, Yinlian & Yang, Anren & Wang, Yan, 2023. "Information theory-based dynamic feature capture and global multi-objective optimization approach for organic Rankine cycle (ORC) considering road environment," Applied Energy, Elsevier, vol. 348(C).
    3. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Yang, Anren & Yan, Yinlian & Pan, Yachao & Wang, Yan, 2023. "Ensemble of self-organizing adaptive maps and dynamic multi-objective optimization for organic Rankine cycle (ORC) under transportation and driving environment," Energy, Elsevier, vol. 275(C).
    4. Xu Ping & Baofeng Yao & Hongguang Zhang & Hongzhi Zhang & Jia Liang & Meng Yuan & Kai Niu & Yan Wang, 2022. "Comprehensive Performance Assessment of Dual Loop Organic Rankine Cycle (DORC) for CNG Engine: Energy, Thermoeconomic and Environment," Energies, MDPI, vol. 15(21), pages 1-28, October.
    5. Du, Yang & Yang, Zhenghao & Zhang, Zeqi & Wang, Zhenbiao & He, Guangyu & Wang, Jiangfeng & Zhao, Pan, 2024. "Control strategy optimization exploration of a novel hydrogen-fed high-efficiency X-type rotary engine hybrid power system by coupling with recuperative organic Rankine cycle," Energy, Elsevier, vol. 293(C).
    6. Valentin Morenov & Ekaterina Leusheva & Alexander Lavrik & Anna Lavrik & George Buslaev, 2022. "Gas-Fueled Binary Energy System with Low-Boiling Working Fluid for Enhanced Power Generation," Energies, MDPI, vol. 15(7), pages 1-15, March.
    7. Lu, Shengdong & Yang, Xinle & Bu, Shujuan & Li, Weikang & Yu, Ning & Wang, Xin & Dai, Wenzhi & Liu, Xunan, 2024. "Performance and parameter prediction of SCR–ORC system based on data–model fusion and twin data–driven," Energy, Elsevier, vol. 290(C).
    8. Shi, Yao & Zhang, Zhiming & Chen, Xiaoqiang & Xie, Lei & Liu, Xueqin & Su, Hongye, 2023. "Data-Driven model identification and efficient MPC via quasi-linear parameter varying representation for ORC waste heat recovery system," Energy, Elsevier, vol. 271(C).
    9. Yachao Pan & Fubin Yang & Hongguang Zhang & Yinlian Yan & Anren Yang & Jia Liang & Mingzhe Yu, 2022. "Performance Prediction and Working Fluid Active Design of Organic Rankine Cycle Based on Molecular Structure," Energies, MDPI, vol. 15(21), pages 1-22, November.
    10. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Pan, Yachao & Zhang, Wujie & Wang, Yan, 2023. "Nonlinear modeling and multi-scale influence characteristics analysis of organic Rankine cycle (ORC) system considering variable driving cycles," Energy, Elsevier, vol. 265(C).
    11. Balali, Adel & Asadabadi, Mohammad Javad Raji & Mehrenjani, Javad Rezazadeh & Gharehghani, Ayat & Moghimi, Mahdi, 2023. "Development and neural network optimization of a renewable-based system for hydrogen production and desalination," Renewable Energy, Elsevier, vol. 218(C).
    12. Huo, Da & Zhang, Xiaotao & Meng, Shuang & Wu, Gang & Li, Junhang & Di, Ruoqi, 2022. "Green finance and energy efficiency: Dynamic study of the spatial externality of institutional support in a digital economy by using hidden Markov chain," Energy Economics, Elsevier, vol. 116(C).
    13. Lan, Song & Li, Qingshan & Guo, Xin & Wang, Shukun & Chen, Rui, 2023. "Fuel saving potential analysis of bifunctional vehicular waste heat recovery system using thermoelectric generator and organic Rankine cycle," Energy, Elsevier, vol. 263(PB).
    14. Miao, Zheng & Wang, Zhanbo & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Xu, Jinliang, 2023. "Development of selection criteria of zeotropic mixtures as working fluids for the trans-critical organic Rankine cycle," Energy, Elsevier, vol. 278(PA).
    15. Miao, Zheng & Yan, Peiwei & Xiao, Meng & Zhang, Manzheng & Xu, Jinliang, 2023. "Comparative study on operating strategies of the organic Rankine cycle under transient heat source," Energy, Elsevier, vol. 285(C).
    16. Gu, Zhengzhao & Feng, Kewen & Ge, Lei & Quan, Long, 2023. "Dynamic modeling and optimization of organic Rankine cycle in the waste heat recovery of the hydraulic system," Energy, Elsevier, vol. 263(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Zhang, Wujie & Wang, Yan & Yao, Baofeng, 2023. "Dynamic response assessment and multi-objective optimization of organic Rankine cycle (ORC) under vehicle driving cycle conditions," Energy, Elsevier, vol. 263(PA).
    2. Alklaibi, A.M. & Lior, N., 2021. "Waste heat utilization from internal combustion engines for power augmentation and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Pan, Yachao & Zhang, Wujie & Wang, Yan, 2023. "Nonlinear modeling and multi-scale influence characteristics analysis of organic Rankine cycle (ORC) system considering variable driving cycles," Energy, Elsevier, vol. 265(C).
    4. Baofeng Yao & Xu Ping & Hongguang Zhang, 2021. "Dynamic Response Characteristics Analysis and Energy, Exergy, and Economic (3E) Evaluation of Dual Loop Organic Rankine Cycle (DORC) for CNG Engine Waste Heat Recovery," Energies, MDPI, vol. 14(19), pages 1-32, September.
    5. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Yu, Mingzhe & Wang, Yan, 2023. "Investigation and multi-objective optimization of vehicle engine-organic Rankine cycle (ORC) combined system in different driving conditions," Energy, Elsevier, vol. 263(PB).
    6. Xu Ping & Baofeng Yao & Hongguang Zhang & Hongzhi Zhang & Jia Liang & Meng Yuan & Kai Niu & Yan Wang, 2022. "Comprehensive Performance Assessment of Dual Loop Organic Rankine Cycle (DORC) for CNG Engine: Energy, Thermoeconomic and Environment," Energies, MDPI, vol. 15(21), pages 1-28, October.
    7. Zhu, Yilin & Li, Weiyi & Sun, Guanzhong & Li, Haojie, 2018. "Thermo-economic analysis based on objective functions of an organic Rankine cycle for waste heat recovery from marine diesel engine," Energy, Elsevier, vol. 158(C), pages 343-356.
    8. Jiménez-Arreola, Manuel & Wieland, Christoph & Romagnoli, Alessandro, 2019. "Direct vs indirect evaporation in Organic Rankine Cycle (ORC) systems: A comparison of the dynamic behavior for waste heat recovery of engine exhaust," Applied Energy, Elsevier, vol. 242(C), pages 439-452.
    9. Tian, Yaming & Zhang, Hongguang & Li, Jian & Hou, Xiaochen & Zhao, Tenglong & Yang, Fubin & Xu, Yonghong & Wang, Xin, 2018. "Development and validation of a single-piston free piston expander-linear generator for a small-scale organic Rankine cycle," Energy, Elsevier, vol. 161(C), pages 809-820.
    10. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    11. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Yang, Anren & Yan, Yinlian & Pan, Yachao & Wang, Yan, 2023. "Ensemble of self-organizing adaptive maps and dynamic multi-objective optimization for organic Rankine cycle (ORC) under transportation and driving environment," Energy, Elsevier, vol. 275(C).
    12. Hoang, Anh Tuan, 2018. "Waste heat recovery from diesel engines based on Organic Rankine Cycle," Applied Energy, Elsevier, vol. 231(C), pages 138-166.
    13. Imran, Muhammad & Haglind, Fredrik & Lemort, Vincent & Meroni, Andrea, 2019. "Optimization of organic rankine cycle power systems for waste heat recovery on heavy-duty vehicles considering the performance, cost, mass and volume of the system," Energy, Elsevier, vol. 180(C), pages 229-241.
    14. Yang, Fubin & Cho, Heejin & Zhang, Hongguang & Zhang, Jian, 2017. "Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery," Applied Energy, Elsevier, vol. 205(C), pages 1100-1118.
    15. Yang, Min-Hsiung, 2016. "Optimizations of the waste heat recovery system for a large marine diesel engine based on transcritical Rankine cycle," Energy, Elsevier, vol. 113(C), pages 1109-1124.
    16. Panesar, Angad Singh, 2016. "An innovative organic Rankine cycle approach for high temperature applications," Energy, Elsevier, vol. 115(P2), pages 1436-1450.
    17. Yang, Fubin & Zhang, Hongguang & Yu, Zhibin & Wang, Enhua & Meng, Fanxiao & Liu, Hongda & Wang, Jingfu, 2017. "Parametric optimization and heat transfer analysis of a dual loop ORC (organic Rankine cycle) system for CNG engine waste heat recovery," Energy, Elsevier, vol. 118(C), pages 753-775.
    18. Chatzopoulou, Maria Anna & Lecompte, Steven & Paepe, Michel De & Markides, Christos N., 2019. "Off-design optimisation of organic Rankine cycle (ORC) engines with different heat exchangers and volumetric expanders in waste heat recovery applications," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    19. Yu, Xiaoli & Li, Zhi & Lu, Yiji & Huang, Rui & Roskilly, Anthony Paul, 2019. "Investigation of organic Rankine cycle integrated with double latent thermal energy storage for engine waste heat recovery," Energy, Elsevier, vol. 170(C), pages 1098-1112.
    20. Jiménez-Arreola, Manuel & Pili, Roberto & Wieland, Christoph & Romagnoli, Alessandro, 2018. "Analysis and comparison of dynamic behavior of heat exchangers for direct evaporation in ORC waste heat recovery applications from fluctuating sources," Applied Energy, Elsevier, vol. 216(C), pages 724-740.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:246:y:2022:i:c:s0360544222003413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.