IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics0360544223036228.html
   My bibliography  Save this article

Study of hydrate nucleation and growth aided by micro-nanobubbles: Probing the hydrate memory effect

Author

Listed:
  • Feng, Yu
  • Han, Yuze
  • Gao, Peng
  • Kuang, Yangmin
  • Yang, Lei
  • Zhao, Jiafei
  • Song, Yongchen

Abstract

Gas hydrates have been considered promising in gas storage, gas separation, and water desalination. The hydrates' technical application is affected by the long kinetics time. Of interest is gas hydrates show strong facilitation in dissociated water containing a high concentration of micro-nanobubbles. Here, it was discovered that the nano-particles present in the dissociated water were identified as nano-bubbles, characterized by nanoparticle track analyzer and infrared spectrum. The presence of bubbles increased the nucleation probability, likely attributed to the provision of nucleation sites. Results indicated that the ability of facilitation was related to the nanobubble types: the bubble solution with the same guest molecules exhibited similar facilitation to dissociated water; specifically, the average induction time was shortened by 27.48 %, the nucleation probability was increased by 50 % compared to deionized water. Moreover, the time hydrate filled the field of view with high bubble concentration was reduced by 60 % compared with low bubble concentration. The facilitation effect mechanism could be related to the presence of gas-dense regions inside the bubbles, based on the Raman results. This finding may offer valuable insights for the application of hydrate-based energy storage technology and shed light on the potential role of bubbles in causing memory effects.

Suggested Citation

  • Feng, Yu & Han, Yuze & Gao, Peng & Kuang, Yangmin & Yang, Lei & Zhao, Jiafei & Song, Yongchen, 2024. "Study of hydrate nucleation and growth aided by micro-nanobubbles: Probing the hydrate memory effect," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223036228
    DOI: 10.1016/j.energy.2023.130228
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223036228
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130228?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Yongchen & Yang, Lei & Zhao, Jiafei & Liu, Weiguo & Yang, Mingjun & Li, Yanghui & Liu, Yu & Li, Qingping, 2014. "The status of natural gas hydrate research in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 778-791.
    2. Wang, Xiaolin & Dennis, Mike & Hou, Liangzhuo, 2014. "Clathrate hydrate technology for cold storage in air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 34-51.
    3. Chen, Bingbing & Sun, Huiru & Li, Kehan & Yu, Tao & Jiang, Lanlan & Yang, Mingjun & Song, Yongchen, 2023. "Unsaturated water flow-induced the structure variation of gas hydrate reservoir and its effect on fluid migration and gas production," Energy, Elsevier, vol. 282(C).
    4. Veluswamy, Hari Prakash & Kumar, Asheesh & Seo, Yutaek & Lee, Ju Dong & Linga, Praveen, 2018. "A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates," Applied Energy, Elsevier, vol. 216(C), pages 262-285.
    5. Yang, Lei & Shi, Kangji & Qu, Aoxing & Liang, Huiyong & Li, Qingping & Lv, Xin & Leng, Shudong & Liu, Yanzhen & Zhang, Lunxiang & Liu, Yu & Xiao, Bo & Yang, Shengxiong & Zhao, Jiafei & Song, Yongchen, 2023. "The locally varying thermodynamic driving force dominates the gas production efficiency from natural gas hydrate-bearing marine sediments," Energy, Elsevier, vol. 276(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Jiafei & Song, Yongchen & Lim, Xin-Le & Lam, Wei-Haur, 2017. "Opportunities and challenges of gas hydrate policies with consideration of environmental impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 875-885.
    2. Zhang, Fengyuan & Wang, Xiaolin & Lou, Xia & Lipiński, Wojciech, 2021. "The effect of sodium dodecyl sulfate and dodecyltrimethylammonium chloride on the kinetics of CO2 hydrate formation in the presence of tetra-n-butyl ammonium bromide for carbon capture applications," Energy, Elsevier, vol. 227(C).
    3. Cheng, Zucheng & Sun, Lintao & Liu, Yingying & Jiang, Lanlan & Chen, Bingbing & Song, Yongchen, 2023. "Study on the micro-macro kinetic and amino acid-enhanced separation of CO2-CH4 via sII hydrate," Renewable Energy, Elsevier, vol. 218(C).
    4. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    5. Xu, Xiao & Hu, Weihao & Cao, Di & Liu, Wen & Huang, Qi & Hu, Yanting & Chen, Zhe, 2021. "Enhanced design of an offgrid PV-battery-methanation hybrid energy system for power/gas supply," Renewable Energy, Elsevier, vol. 167(C), pages 440-456.
    6. Stanislav L. Borodin & Nail G. Musakaev & Denis S. Belskikh, 2022. "Mathematical Modeling of a Non-Isothermal Flow in a Porous Medium Considering Gas Hydrate Decomposition: A Review," Mathematics, MDPI, vol. 10(24), pages 1-17, December.
    7. Xue, Kunpeng & Liu, Yu & Yu, Tao & Yang, Lei & Zhao, Jiafei & Song, Yongchen, 2023. "Numerical simulation of gas hydrate production in shenhu area using depressurization: The effect of reservoir permeability heterogeneity," Energy, Elsevier, vol. 271(C).
    8. Olga Gaidukova & Sergei Misyura & Pavel Strizhak, 2022. "Key Areas of Gas Hydrates Study: Review," Energies, MDPI, vol. 15(5), pages 1-18, February.
    9. Kwanghee Jeong & Bruce W. E. Norris & Eric F. May & Zachary M. Aman, 2023. "Hydrate Formation from Joule Thomson Expansion Using a Single Pass Flowloop," Energies, MDPI, vol. 16(22), pages 1-16, November.
    10. Veluswamy, Hari Prakash & Kumar, Asheesh & Premasinghe, Kulesha & Linga, Praveen, 2017. "Effect of guest gas on the mixed tetrahydrofuran hydrate kinetics in a quiescent system," Applied Energy, Elsevier, vol. 207(C), pages 573-583.
    11. Zhao, Guojun & Zheng, Jia-nan & Gong, Guangjun & Chen, Bingbing & Yang, Mingjun & Song, Yongchen, 2023. "Formation characteristics and leakage termination effects of CO2 hydrate cap in case of geological sequestration leakage," Applied Energy, Elsevier, vol. 351(C).
    12. Yang, Mingjun & Dong, Shuang & Zhao, Jie & Zheng, Jia-nan & Liu, Zheyuan & Song, Yongchen, 2021. "Ice behaviors and heat transfer characteristics during the isothermal production process of methane hydrate reservoirs by depressurization," Energy, Elsevier, vol. 232(C).
    13. Sanya Du & Yixin Qu & Hui Li & Xiaohui Yu, 2022. "Methane Adsorption Properties in Biomaterials: A Possible Route to Gas Storage and Transportation," Energies, MDPI, vol. 15(12), pages 1-14, June.
    14. Beckwée, Emile Jules & Houlleberghs, Maarten & Ciocarlan, Radu-George & Chandran, C. Vinod & Radhakrishnan, Sambhu & Hanssens, Lucas & Cool, Pegie & Martens, Johan & Breynaert, Eric & Baron, Gino V. &, 2024. "Structure I methane hydrate confined in C8-grafted SBA-15: A highly efficient storage system enabling ultrafast methane loading and unloading," Applied Energy, Elsevier, vol. 353(PA).
    15. Park, Joon Ho & Park, Jungjoon & Lee, Jae Won & Kang, Yong Tae, 2023. "Progress in CO2 hydrate formation and feasibility analysis for cold thermal energy harvesting application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    16. Liu, Xianjie & Feng, Qian & Peng, Zhigang & Zheng, Yong & Liu, Huan, 2020. "Preparation and evaluation of micro-encapsulated thermal control materials for oil well cement slurry," Energy, Elsevier, vol. 208(C).
    17. Wang, Xiao & Pan, Lin & Lau, Hon Chung & Zhang, Ming & Li, Longlong & Zhou, Qiao, 2018. "Reservoir volume of gas hydrate stability zones in permafrost regions of China," Applied Energy, Elsevier, vol. 225(C), pages 486-500.
    18. Fangtian Wang & Bin Zhao & Gang Li, 2018. "Prevention of Potential Hazards Associated with Marine Gas Hydrate Exploitation: A Review," Energies, MDPI, vol. 11(9), pages 1-19, September.
    19. He, Tianbiao & Chong, Zheng Rong & Zheng, Junjie & Ju, Yonglin & Linga, Praveen, 2019. "LNG cold energy utilization: Prospects and challenges," Energy, Elsevier, vol. 170(C), pages 557-568.
    20. Bi, Yuehong & Chen, Jie & Miao, Zhen, 2016. "Thermodynamic optimization for dissociation process of gas hydrates," Energy, Elsevier, vol. 106(C), pages 270-276.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223036228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.