IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i2p113-d64000.html
   My bibliography  Save this article

Ice Storage Air-Conditioning System Simulation with Dynamic Electricity Pricing: A Demand Response Study

Author

Listed:
  • Chi-Chun Lo

    (Institute of Electrical and Control Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
    Department of Engineering and Maintenance, Chang Gung Memorial Hospital, Kaosiung 83301, Taiwan
    These authors contributed equally to this work.)

  • Shang-Ho Tsai

    (Institute of Electrical and Control Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
    These authors contributed equally to this work.)

  • Bor-Shyh Lin

    (Institute of Imaging and Biomedical Photonics, National Chiao Tung University, Tainan 71150, Taiwan)

Abstract

This paper presents an optimal dispatch model of an ice storage air-conditioning system for participants to quickly and accurately perform energy saving and demand response, and to avoid the over contact with electricity price peak. The schedule planning for an ice storage air-conditioning system of demand response is mainly to transfer energy consumption from the peak load to the partial-peak or off-peak load. Least Squares Regression (LSR) is used to obtain the polynomial function for the cooling capacity and the cost of power consumption with a real ice storage air-conditioning system. Based on the dynamic electricity pricing, the requirements of cooling loads, and all technical constraints, the dispatch model of the ice-storage air-conditioning system is formulated to minimize the operation cost. The Improved Ripple Bee Swarm Optimization (IRBSO) algorithm is proposed to solve the dispatch model of the ice storage air-conditioning system in a daily schedule on summer. Simulation results indicate that reasonable solutions provide a practical and flexible framework allowing the demand response of ice storage air-conditioning systems to demonstrate the optimization of its energy savings and operational efficiency and offering greater energy efficiency.

Suggested Citation

  • Chi-Chun Lo & Shang-Ho Tsai & Bor-Shyh Lin, 2016. "Ice Storage Air-Conditioning System Simulation with Dynamic Electricity Pricing: A Demand Response Study," Energies, MDPI, vol. 9(2), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:2:p:113-:d:64000
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/2/113/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/2/113/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Wen-Shing & Chen, Yi -Ting & Wu, Ting-Hau, 2009. "Optimization for ice-storage air-conditioning system using particle swarm algorithm," Applied Energy, Elsevier, vol. 86(9), pages 1589-1595, September.
    2. Wang, Xiaolin & Dennis, Mike & Hou, Liangzhuo, 2014. "Clathrate hydrate technology for cold storage in air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 34-51.
    3. Chua, K.J. & Chou, S.K. & Yang, W.M. & Yan, J., 2013. "Achieving better energy-efficient air conditioning – A review of technologies and strategies," Applied Energy, Elsevier, vol. 104(C), pages 87-104.
    4. Alsumait, J.S. & Sykulski, J.K. & Al-Othman, A.K., 2010. "A hybrid GA-PS-SQP method to solve power system valve-point economic dispatch problems," Applied Energy, Elsevier, vol. 87(5), pages 1773-1781, May.
    5. Vo, Dieu Ngoc & Ongsakul, Weerakorn, 2012. "Economic dispatch with multiple fuel types by enhanced augmented Lagrange Hopfield network," Applied Energy, Elsevier, vol. 91(1), pages 281-289.
    6. Chan, Apple L.S. & Chow, Tin-Tai & Fong, Square K.F. & Lin, John Z., 2006. "Performance evaluation of district cooling plant with ice storage," Energy, Elsevier, vol. 31(14), pages 2750-2762.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmad Murtaza Ershad & Robert Pietzcker & Falko Ueckerdt & Gunnar Luderer, 2020. "Managing Power Demand from Air Conditioning Benefits Solar PV in India Scenarios for 2040," Energies, MDPI, vol. 13(9), pages 1-19, May.
    2. Pei Cai & Youxue Jiang & He Wang & Liangyu Wu & Peng Cao & Yulong Zhang & Feng Yao, 2020. "Numerical Simulation on the Influence of the Longitudinal Fins on the Enhancement of a Shell-and-Tube Ice Storage Device," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
    3. Wagner, Lukas Peter & Reinpold, Lasse Matthias & Kilthau, Maximilian & Fay, Alexander, 2023. "A systematic review of modeling approaches for flexible energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    4. Hao, Ling & Wei, Mingshan & Xu, Fei & Yang, Xiaochen & Meng, Jia & Song, Panpan & Min, Yong, 2020. "Study of operation strategies for integrating ice-storage district cooling systems into power dispatch for large-scale hydropower utilization," Applied Energy, Elsevier, vol. 261(C).
    5. Qingshan Xu & Yifan Ding & Aixia Zheng, 2017. "An Optimal Dispatch Model of Wind-Integrated Power System Considering Demand Response and Reliability," Sustainability, MDPI, vol. 9(5), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cox, Sam J. & Kim, Dongsu & Cho, Heejin & Mago, Pedro, 2019. "Real time optimal control of district cooling system with thermal energy storage using neural networks," Applied Energy, Elsevier, vol. 238(C), pages 466-480.
    2. Glotić, Arnel & Zamuda, Aleš, 2015. "Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution," Applied Energy, Elsevier, vol. 141(C), pages 42-56.
    3. Kheshti, Mostafa & Ding, Lei & Ma, Shicong & Zhao, Bing, 2018. "Double weighted particle swarm optimization to non-convex wind penetrated emission/economic dispatch and multiple fuel option systems," Renewable Energy, Elsevier, vol. 125(C), pages 1021-1037.
    4. Goudarzi, Arman & Swanson, Andrew G. & Van Coller, John & Siano, Pierluigi, 2017. "Smart real-time scheduling of generating units in an electricity market considering environmental aspects and physical constraints of generators," Applied Energy, Elsevier, vol. 189(C), pages 667-696.
    5. Kheshti, Mostafa & Kang, Xiaoning & Bie, Zhaohong & Jiao, Zaibin & Wang, Xiuli, 2017. "An effective Lightning Flash Algorithm solution to large scale non-convex economic dispatch with valve-point and multiple fuel options on generation units," Energy, Elsevier, vol. 129(C), pages 1-15.
    6. Luerssen, Christoph & Gandhi, Oktoviano & Reindl, Thomas & Sekhar, Chandra & Cheong, David, 2020. "Life cycle cost analysis (LCCA) of PV-powered cooling systems with thermal energy and battery storage for off-grid applications," Applied Energy, Elsevier, vol. 273(C).
    7. Luerssen, Christoph & Gandhi, Oktoviano & Reindl, Thomas & Sekhar, Chandra & Cheong, David, 2019. "Levelised Cost of Storage (LCOS) for solar-PV-powered cooling in the tropics," Applied Energy, Elsevier, vol. 242(C), pages 640-654.
    8. Xiong, Guojiang & Shi, Dongyuan & Duan, Xianzhong, 2013. "Multi-strategy ensemble biogeography-based optimization for economic dispatch problems," Applied Energy, Elsevier, vol. 111(C), pages 801-811.
    9. Rajakumar Ramalingam & Dinesh Karunanidy & Sultan S. Alshamrani & Mamoon Rashid & Swamidoss Mathumohan & Ankur Dumka, 2022. "Oppositional Pigeon-Inspired Optimizer for Solving the Non-Convex Economic Load Dispatch Problem in Power Systems," Mathematics, MDPI, vol. 10(18), pages 1-24, September.
    10. Whei-Min Lin & Chia-Sheng Tu & Ming-Tang Tsai & Chi-Chun Lo, 2015. "Optimal Energy Reduction Schedules for Ice Storage Air-Conditioning Systems," Energies, MDPI, vol. 8(9), pages 1-18, September.
    11. Meng, Anbo & Li, Jinbei & Yin, Hao, 2016. "An efficient crisscross optimization solution to large-scale non-convex economic load dispatch with multiple fuel types and valve-point effects," Energy, Elsevier, vol. 113(C), pages 1147-1161.
    12. Parameshwaran, R. & Kalaiselvam, S. & Harikrishnan, S. & Elayaperumal, A., 2012. "Sustainable thermal energy storage technologies for buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2394-2433.
    13. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    14. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    15. Zhang, Fengyuan & Wang, Xiaolin & Lou, Xia & Lipiński, Wojciech, 2021. "The effect of sodium dodecyl sulfate and dodecyltrimethylammonium chloride on the kinetics of CO2 hydrate formation in the presence of tetra-n-butyl ammonium bromide for carbon capture applications," Energy, Elsevier, vol. 227(C).
    16. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    17. Niamsuwan, Sathit & Kittisupakorn, Paisan & Suwatthikul, Ajaree, 2015. "Enhancement of energy efficiency in a paint curing oven via CFD approach: Case study in an air-conditioning plant," Applied Energy, Elsevier, vol. 156(C), pages 465-477.
    18. Svetlana Ratner & Yuri Chepurko & Larisa Drobyshecskaya & Anna Petrovskaya, 2018. "Management of Energy Enterprises: Energy-efficiency Approach in Solar Collectors Industry: The Case of Russia," International Journal of Energy Economics and Policy, Econjournals, vol. 8(4), pages 237-243.
    19. Yang, Xiaohu & Yu, Jiabang & Guo, Zengxu & Jin, Liwen & He, Ya-Ling, 2019. "Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube," Applied Energy, Elsevier, vol. 239(C), pages 142-156.
    20. Wang, Wenqing & Kolditz, Olaf & Nagel, Thomas, 2017. "Parallel finite element modelling of multi-physical processes in thermochemical energy storage devices," Applied Energy, Elsevier, vol. 185(P2), pages 1954-1964.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:2:p:113-:d:64000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.