IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics0360544223035028.html
   My bibliography  Save this article

Measuring the efficiency gains of merging carbon markets – A microsimulation for thermoelectric and industrial sources

Author

Listed:
  • Mardones, Cristian

Abstract

Many carbon markets have emerged worldwide, but their poor sector coverage generates economic inefficiency. This is the first study that quantifies the efficiency gains of expanding the sectoral coverage of an Emissions Trading System (ETS) through an optimization model calibrated with microdata. For the above, the behavior of Chilean thermoelectric and industrial sources that participate in two independent ETSs is simulated, and then the effects of integrating both carbon markets are analyzed. The model minimizes the costs of meeting an aggregate emissions target subject to the abatement options for regulated sources. The results show that if a target of 30 % is established, the price of the allowances would be 36.2 USD/tCO2 in the ETS for thermoelectric sources and 17.4 USD/tCO2 in the ETS for industrial sources. The difference in the prices of both ETSs reflects that their merger would lead to efficiency gains. In fact, the price would be 34.4 USD/tCO2 if both types of sources participate in a single carbon market, implying a saving of USD 30.7 million, equivalent to 9.7 % of the total cost of compliance obtained with independent carbon markets. Thus, it is concluded that expanding the sectoral coverage of an ETS promotes efficiency through lower prices.

Suggested Citation

  • Mardones, Cristian, 2024. "Measuring the efficiency gains of merging carbon markets – A microsimulation for thermoelectric and industrial sources," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223035028
    DOI: 10.1016/j.energy.2023.130108
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223035028
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Löschel, Andreas & Lutz, Benjamin Johannes & Managi, Shunsuke, 2019. "The impacts of the EU ETS on efficiency and economic performance – An empirical analyses for German manufacturing firms," Resource and Energy Economics, Elsevier, vol. 56(C), pages 71-95.
    2. Mardones, Cristian & Cabello, Martin, 2019. "Effectiveness of local air pollution and GHG taxes: The case of Chilean industrial sources," Energy Economics, Elsevier, vol. 83(C), pages 491-500.
    3. Cristian Mardones & Jorge Jiménez, 2015. "Alternatives for Reducing Fine Particulate Matter from Industrial Activities in Concepción Metropolitan Area, Chile," Energy & Environment, , vol. 26(3), pages 445-456, April.
    4. Montgomery, W. David, 1972. "Markets in licenses and efficient pollution control programs," Journal of Economic Theory, Elsevier, vol. 5(3), pages 395-418, December.
    5. Jin, Yana & Liu, Xiaorui & Chen, Xiang & Dai, Hancheng, 2020. "Allowance allocation matters in China's carbon emissions trading system," Energy Economics, Elsevier, vol. 92(C).
    6. Marit Klemetsen & Knut Einar Rosendahl & Anja Lund Jakobsen, 2020. "The Impacts Of The Eu Ets On Norwegian Plants’ Environmental And Economic Performance," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 1-32, February.
    7. Atkinson, Scott E. & Lewis, Donald H., 1974. "A cost-effectiveness analysis of alternative air quality control strategies," Journal of Environmental Economics and Management, Elsevier, vol. 1(3), pages 237-250, November.
    8. Palacios, Milagros & Chávez, Carlos, 2005. "Determinants of compliance in the emissions compensation program in Santiago, Chile," Environment and Development Economics, Cambridge University Press, vol. 10(4), pages 453-483, August.
    9. Teixidó, Jordi & Verde, Stefano F. & Nicolli, Francesco, 2019. "The impact of the EU Emissions Trading System on low-carbon technological change: The empirical evidence," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    10. Marcela Alegría & Cristian Mardones & Jorge Jiménez, 2013. "Reduction of Pm10 Emissions under Scenarios of Regulation and Availability of Natural Gas in the Bio Bio Region, Chile," Energy & Environment, , vol. 24(6), pages 1031-1041, October.
    11. Gugler, Klaus & Haxhimusa, Adhurim & Liebensteiner, Mario, 2021. "Effectiveness of climate policies: Carbon pricing vs. subsidizing renewables," Journal of Environmental Economics and Management, Elsevier, vol. 106(C).
    12. O'Ryan, Raul E., 1996. "Cost-Effective Policies to Improve Urban Air Quality in Santiago, Chile," Journal of Environmental Economics and Management, Elsevier, vol. 31(3), pages 302-313, November.
    13. Koch, Nicolas & Grosjean, Godefroy & Fuss, Sabine & Edenhofer, Ottmar, 2016. "Politics matters: Regulatory events as catalysts for price formation under cap-and-trade," Journal of Environmental Economics and Management, Elsevier, vol. 78(C), pages 121-139.
    14. Dechezleprêtre, Antoine & Nachtigall, Daniel & Venmans, Frank, 2023. "The joint impact of the European Union emissions trading system on carbon emissions and economic performance," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    15. Montero, Juan-Pablo & Sanchez, Jose Miguel & Katz, Ricardo, 2002. "A Market-Based Environmental Policy Experiment in Chile," Journal of Law and Economics, University of Chicago Press, vol. 45(1), pages 267-287, April.
    16. Seskin, Eugene P. & Anderson, Robert Jr. & Reid, Robert O., 1983. "An empirical analysis of economic strategies for controlling air pollution," Journal of Environmental Economics and Management, Elsevier, vol. 10(2), pages 112-124, June.
    17. Mardones, Cristian & García, Catalina, 2020. "Effectiveness of CO2 taxes on thermoelectric power plants and industrial plants," Energy, Elsevier, vol. 206(C).
    18. Mardones, Cristian & Ortega, José, 2021. "Are the emissions trading systems’ simulations generated with a computable general equilibrium model sensitive to the nested production structure?," Applied Energy, Elsevier, vol. 298(C).
    19. Fan, Jing-Li & Xu, Mao & Li, Fengyu & Yang, Lin & Zhang, Xian, 2018. "Carbon capture and storage (CCS) retrofit potential of coal-fired power plants in China: The technology lock-in and cost optimization perspective," Applied Energy, Elsevier, vol. 229(C), pages 326-334.
    20. Stavins, Robert N., 2003. "Experience with market-based environmental policy instruments," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 1, chapter 9, pages 355-435, Elsevier.
    21. Richard Schmalensee & Robert N. Stavins, 2017. "Lessons Learned from Three Decades of Experience with Cap and Trade," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(1), pages 59-79.
    22. Diaz-Rainey, Ivan & Tulloch, Daniel J., 2018. "Carbon pricing and system linking: Lessons from the New Zealand Emissions Trading Scheme," Energy Economics, Elsevier, vol. 73(C), pages 66-79.
    23. Tan, Xiujie & Sun, Qian & Wang, Meiji & Se Cheong, Tsun & Yan Shum, Wai & Huang, Jinpeng, 2022. "Assessing the effects of emissions trading systems on energy consumption and energy mix," Applied Energy, Elsevier, vol. 310(C).
    24. Mardones, Cristian & Saavedra, Andrés, 2016. "Comparison of economic instruments to reduce PM2.5 from industrial and residential sources," Energy Policy, Elsevier, vol. 98(C), pages 443-452.
    25. Raúl O'Ryan & José Miguel Sánchez, 2007. "Comparison of Net Benefits of Incentive-Based and Command and Control Environmental Regulations: The Case of Santiago, Chile," The World Bank Economic Review, World Bank, vol. 22(2), pages 249-269, August.
    26. Quemin, Simon, 2022. "Raising climate ambition in emissions trading systems: The case of the EU ETS and the 2021 review," Resource and Energy Economics, Elsevier, vol. 68(C).
    27. Ralf Martin & Mirabelle Muûls & Ulrich J. Wagner, 2016. "The Impact of the European Union Emissions Trading Scheme on Regulated Firms: What Is the Evidence after Ten Years?," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(1), pages 129-148.
    28. Tang, Ling & Wang, Haohan & Li, Ling & Yang, Kaitong & Mi, Zhifu, 2020. "Quantitative models in emission trading system research: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    29. Carapellucci, Roberto & Giordano, Lorena & Vaccarelli, Maura, 2017. "Application of an amine-based CO2 capture system in retrofitting combined gas-steam power plants," Energy, Elsevier, vol. 118(C), pages 808-826.
    30. Lin, Boqiang & Jia, Zhijie, 2020. "Does the different sectoral coverage matter? An analysis of China's carbon trading market," Energy Policy, Elsevier, vol. 137(C).
    31. Emilie Alberola & Julien Chevallier, 2009. "European Carbon Prices and Banking Restrictions: Evidence from Phase I (2005-2007)," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 51-80.
    32. Yong-Gun Kim & Jong-Soo Lim, 2021. "Treatment of indirect emissions from the power sector in Korean emissions trading system," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(3), pages 581-592, July.
    33. Jiang, Hong-Dian & Liu, Li-Jing & Dong, Kangyin & Fu, Yu-Wei, 2022. "How will sectoral coverage in the carbon trading system affect the total oil consumption in China? A CGE-based analysis," Energy Economics, Elsevier, vol. 110(C).
    34. Zhang, Yue-Jun & Wei, Yi-Ming, 2010. "An overview of current research on EU ETS: Evidence from its operating mechanism and economic effect," Applied Energy, Elsevier, vol. 87(6), pages 1804-1814, June.
    35. Fang, Chenhao & Ma, Tieju, 2020. "Stylized agent-based modeling on linking emission trading systems and its implications for China's practice," Energy Economics, Elsevier, vol. 92(C).
    36. Baumol,William J. & Oates,Wallace E., 1988. "The Theory of Environmental Policy," Cambridge Books, Cambridge University Press, number 9780521322249.
    37. Bersani, Alberto M. & Falbo, Paolo & Mastroeni, Loretta, 2022. "Is the ETS an effective environmental policy? Undesired interaction between energy-mix, fuel-switch and electricity prices," Energy Economics, Elsevier, vol. 110(C).
    38. Wang, Han & Chen, Zhoupeng & Wu, Xingyi & Nie, Xin, 2019. "Can a carbon trading system promote the transformation of a low-carbon economy under the framework of the porter hypothesis? —Empirical analysis based on the PSM-DID method," Energy Policy, Elsevier, vol. 129(C), pages 930-938.
    39. Tan, Qinliang & Ding, Yihong & Zheng, Jin & Dai, Mei & Zhang, Yimei, 2021. "The effects of carbon emissions trading and renewable portfolio standards on the integrated wind–photovoltaic–thermal power-dispatching system: Real case studies in China," Energy, Elsevier, vol. 222(C).
    40. Cao, Jing & Ho, Mun S. & Ma, Rong & Teng, Fei, 2021. "When carbon emission trading meets a regulated industry: Evidence from the electricity sector of China," Journal of Public Economics, Elsevier, vol. 200(C).
    41. Kim, Pyung & Bae, Hyunhoe, 2022. "Do firms respond differently to the carbon pricing by industrial sector? How and why? A comparison between manufacturing and electricity generation sectors using firm-level panel data in Korea," Energy Policy, Elsevier, vol. 162(C).
    42. Amigo, Pía & Cea-Echenique, Sebastián & Feijoo, Felipe, 2021. "A two stage cap-and-trade model with allowance re-trading and capacity investment: The case of the Chilean NDC targets," Energy, Elsevier, vol. 224(C).
    43. Lee, Kangil & Melstrom, Richard T., 2018. "Evidence of increased electricity influx following the regional greenhouse gas initiative," Energy Economics, Elsevier, vol. 76(C), pages 127-135.
    44. Mu, Yaqian & Evans, Samuel & Wang, Can & Cai, Wenjia, 2018. "How will sectoral coverage affect the efficiency of an emissions trading system? A CGE-based case study of China," Applied Energy, Elsevier, vol. 227(C), pages 403-414.
    45. Pereira, Andrés & Sauma, Enzo, 2020. "Power systems expansion planning with time-varying CO2 tax," Energy Policy, Elsevier, vol. 144(C).
    46. Stefano F. Verde, 2020. "The Impact Of The Eu Emissions Trading System On Competitiveness And Carbon Leakage: The Econometric Evidence," Journal of Economic Surveys, Wiley Blackwell, vol. 34(2), pages 320-343, April.
    47. Daskalakis, George & Psychoyios, Dimitris & Markellos, Raphael N., 2009. "Modeling CO2 emission allowance prices and derivatives: Evidence from the European trading scheme," Journal of Banking & Finance, Elsevier, vol. 33(7), pages 1230-1241, July.
    48. Yue Xu & Dayu Zhai, 2022. "Impact of Changes in Membership on Prices of a Unified Carbon Market: Case Study of the European Union Emissions Trading System," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    49. Di Zhou & Xiaoyu Liang & Ye Zhou & Kai Tang, 2020. "Does Emission Trading Boost Carbon Productivity? Evidence from China’s Pilot Emission Trading Scheme," IJERPH, MDPI, vol. 17(15), pages 1-16, July.
    50. Mardones, Cristian & Flores, Belén, 2018. "Effectiveness of a CO2 tax on industrial emissions," Energy Economics, Elsevier, vol. 71(C), pages 370-382.
    51. Cristian Mardones, 2021. "Analysis on complementarity between a CO2 tax and an emissions trading system to reduce industrial emissions in Chile," Energy & Environment, , vol. 32(5), pages 820-833, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Svetlana V. Doroshenko & Anna D. Mingaleva, 2020. "Carbon Exchanges: European Experience in Developing the Mechanism of Emission Permit Trading," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 4, pages 52-68, August.
    2. Cristian Mardones, 2021. "Analysis on complementarity between a CO2 tax and an emissions trading system to reduce industrial emissions in Chile," Energy & Environment, , vol. 32(5), pages 820-833, August.
    3. Lessmann, Christian & Kramer, Niklas, 2024. "The effect of cap-and-trade on sectoral emissions: Evidence from California," Energy Policy, Elsevier, vol. 188(C).
    4. Cretí, Anna & Joëts, Marc, 2017. "Multiple bubbles in the European Union Emission Trading Scheme," Energy Policy, Elsevier, vol. 107(C), pages 119-130.
    5. Coria, Jessica & Sterner, Thomas, 2008. "Tradable Permits in Developing Countries: Evidence from Air Pollution in Santiago, Chile," RFF Working Paper Series dp-08-51, Resources for the Future.
    6. Zhang, Jiekuan, 2023. "Emissions trading scheme and energy consumption and output structure: Evidence from China," Renewable Energy, Elsevier, vol. 219(P1).
    7. Stefano Clo' & Gianluca Iannucci & Alessandro Tampieri, 2024. "Emission permits and firms' environmental responsibility," Working Papers - Economics wp2024_06.rdf, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    8. Cropper, Maureen L & Oates, Wallace E, 1992. "Environmental Economics: A Survey," Journal of Economic Literature, American Economic Association, vol. 30(2), pages 675-740, June.
    9. Yu, Zhongjue & Geng, Yong & Calzadilla, Alvaro & Bleischwitz, Raimund, 2022. "China's unconventional carbon emissions trading market: The impact of a rate-based cap in the power generation sector," Energy, Elsevier, vol. 255(C).
    10. Marit Klemetsen & Knut Einar Rosendahl & Anja Lund Jakobsen, 2020. "The Impacts Of The Eu Ets On Norwegian Plants’ Environmental And Economic Performance," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 1-32, February.
    11. Newell, Richard G & Stavins, Robert N, 2003. "Cost Heterogeneity and the Potential Savings from Market-Based Policies," Journal of Regulatory Economics, Springer, vol. 23(1), pages 43-59, January.
    12. Rafaty, R. & Dolphin, G. & Pretis, F., 2020. "Carbon pricing and the elasticity of CO2 emissions," Cambridge Working Papers in Economics 20116, Faculty of Economics, University of Cambridge.
    13. Stavins, Robert, 2003. "Market-Based Environmental Policies: What Can We Learn from U.S. Experience and Related Research?," Working Paper Series rwp03-031, Harvard University, John F. Kennedy School of Government.
    14. Yan Xiao & Yan Zhang & Jiekuan Zhang, 2023. "The Impact of Carbon Emission Trading on Industrial Green Total Factor Productivity," Sustainability, MDPI, vol. 15(7), pages 1-18, April.
    15. Zhang, Yue-Jun & Cheng, Hao-Sen, 2021. "The impact mechanism of the ETS on CO2 emissions from the service sector: Evidence from Beijing and Shanghai," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    16. Yuya Sasaki & Arthur Caplan, 2008. "Matching Heterogeneous Traders in Quantity-Regulated Markets," Computational Economics, Springer;Society for Computational Economics, vol. 31(4), pages 341-362, May.
    17. Mardones, Cristian & Ortega, José, 2021. "Are the emissions trading systems’ simulations generated with a computable general equilibrium model sensitive to the nested production structure?," Applied Energy, Elsevier, vol. 298(C).
    18. Caplan, Arthur J. & Sasaki, Yuya, 2014. "Benchmarking an optimal pattern of pollution trading: The case of Cub River, Utah," Economic Modelling, Elsevier, vol. 36(C), pages 502-510.
    19. Stavins, Robert & Newell, Richard, 2000. "Abatement-Cost Heterogeneity and Anticipated Savings from Market-Based Environmental Policies," Working Paper Series rwp00-006, Harvard University, John F. Kennedy School of Government.
    20. Tan, Xiujie & Wang, Banban & Wei, Jie & Taghizadeh-Hesary, Farhad, 2023. "The role of carbon pricing in achieving energy transition in the Post-COP26 era: Evidence from China's industrial energy conservation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223035028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.