IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics0360544223034424.html
   My bibliography  Save this article

Fluoride-Salt-cooled high-Temperature Advanced Reactor (FuSTAR): An integrated nuclear-based energy production and conversion system

Author

Listed:
  • Zhang, Dalin
  • Li, Xinyu
  • Jiang, Dianqiang
  • Zhou, Xingguang
  • Lv, Xindi
  • Yun, Shichang
  • Wu, Wenqiang
  • He, Xuanang
  • Li, Haoyang
  • Min, Xin
  • Chen, Kailong
  • Tian, Wenxi
  • Qiu, Suizheng
  • Su, G.H.
  • Zhao, Quanbin
  • Fu, Yao
  • Tang, Chuntao
  • Zhuo, Wenbin
  • Li, Jinggang
  • Zuo, Jiaxu

Abstract

Based on the analysis of energy structure and the development trends of advanced nuclear energy technology, combining the complementary advantages of nuclear energy and other energy sources in China, the Fluoride-Salt-cooled high-Temperature Advanced Reactor (FuSTAR) system has been proposed. FuSTAR system is designed to address production capacity issues in areas with energy shortages or resource concentration and can be combined with high-temperature process heat to achieve high-value-added processes such as hydrogen production. In this paper, the Tri-structural isotropic fuel combined with helical cruciform elements has been studied in detail on the neutron physics and thermal-hydraulic properties, and the flow and heat transfer experiment is carried out for the first time. The multilayer nonlinear programming method has been applied to the design of thermal transport systems. Then the optimal parameters and configuration of the thermoelectric conversion system are obtained by the superstructure optimization method. The inherent safety of FuSTAR is demonstrated through deterministic safety analysis. In addition, the iodine-sulfur cycle technology and the characteristics of tritium production are also analyzed. This study highlights the significant potential of integrating nuclear energy with other energy sources in an optimized energy-production system.

Suggested Citation

  • Zhang, Dalin & Li, Xinyu & Jiang, Dianqiang & Zhou, Xingguang & Lv, Xindi & Yun, Shichang & Wu, Wenqiang & He, Xuanang & Li, Haoyang & Min, Xin & Chen, Kailong & Tian, Wenxi & Qiu, Suizheng & Su, G.H., 2024. "Fluoride-Salt-cooled high-Temperature Advanced Reactor (FuSTAR): An integrated nuclear-based energy production and conversion system," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223034424
    DOI: 10.1016/j.energy.2023.130048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223034424
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Guangxu & Huang, Yanping & Wang, Junfeng & Liu, Ruilong, 2020. "A review on the thermal-hydraulic performance and optimization of printed circuit heat exchangers for supercritical CO2 in advanced nuclear power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Lin, Boqiang & Xie, Yongjing, 2022. "Analysis on operational efficiency and its influencing factors of China’s nuclear power plants," Energy, Elsevier, vol. 261(PA).
    3. Jiang, Dianqiang & Zhang, Dalin & Li, Xinyu & Wang, Shibao & Wang, Chenglong & Qin, Hao & Guo, Yanwen & Tian, Wenxi & Su, G.H. & Qiu, Suizheng, 2022. "Fluoride-salt-cooled high-temperature reactors: Review of historical milestones, research status, challenges, and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Wang, Yuqing & Liu, Yingxin & Dou, Jinyue & Li, Mingzhu & Zeng, Ming, 2020. "Geothermal energy in China: Status, challenges, and policy recommendations," Utilities Policy, Elsevier, vol. 64(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Ru & Qiu, Leilei & Sun, Peiwei & Wei, Xinyu, 2024. "Research on nuclear reactor power control system of VVER-1000 with thermal energy supply system," Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dora Villada-Castillo & Guillermo Valencia-Ochoa & Jorge Duarte-Forero, 2023. "Thermohydraulic and Economic Evaluation of a New Design for Printed Circuit Heat Exchangers in Supercritical CO 2 Brayton Cycle," Energies, MDPI, vol. 16(5), pages 1-24, February.
    2. Reyes-Antonio, Claudio Antonio & Iglesias-Silva, Gustavo Arturo & Rubio-Maya, Carlos & Fuentes-Cortés, Luis Fabián, 2024. "Multi-objective design of off-grid low-enthalpy geothermal generation systems considering partial-load operations," Energy, Elsevier, vol. 294(C).
    3. Aizhao Zhou & Xianwen Huang & Wei Wang & Pengming Jiang & Xinwei Li, 2021. "Thermo-Hydraulic Performance of U-Tube Borehole Heat Exchanger with Different Cross-Sections," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    4. Lin, Boqiang & Xie, Yongjing, 2024. "How feed-in-tariff subsidies affect renewable energy investments in China? New evidence from firm-level data," Energy, Elsevier, vol. 294(C).
    5. Dzido, Aleksandra & Wołowicz, Marcin & Krawczyk, Piotr, 2022. "Transcritical carbon dioxide cycle as a way to improve the efficiency of a Liquid Air Energy Storage system," Renewable Energy, Elsevier, vol. 196(C), pages 1385-1391.
    6. Yu, Ruyang & Zhang, Kai & Ramasubramanian, Brindha & Jiang, Shu & Ramakrishna, Seeram & Tang, Yuhang, 2024. "Ensemble learning for predicting average thermal extraction load of a hydrothermal geothermal field: A case study in Guanzhong Basin, China," Energy, Elsevier, vol. 296(C).
    7. Cheng, Yang & Li, Yingxiao & Wang, Jinghan & Tam, Lapmou & Chen, Yitung & Wang, Qiuwang & Ma, Ting, 2023. "Multi-objective optimization of printed circuit heat exchanger used for hydrogen cooler by exergoeconomic method," Energy, Elsevier, vol. 262(PA).
    8. Yibo Wang & Lijuan Wang & Yang Bai & Zhuting Wang & Jie Hu & Di Hu & Yaqi Wang & Shengbiao Hu, 2021. "Assessment of Geothermal Resources in the North Jiangsu Basin, East China, Using Monte Carlo Simulation," Energies, MDPI, vol. 14(2), pages 1-17, January.
    9. Tingting Xu & Hongxia Zhao & Miao Wang & Jianhui Qi, 2021. "Numerical Study of Thermal-Hydraulic Performance of a New Spiral Z-Type PCHE for Supercritical CO 2 Brayton Cycle," Energies, MDPI, vol. 14(15), pages 1-16, July.
    10. Wang, Yongzhen & Li, Chengjun & Zhao, Jun & Wu, Boyuan & Du, Yanping & Zhang, Jing & Zhu, Yilin, 2021. "The above-ground strategies to approach the goal of geothermal power generation in China: State of art and future researches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    11. Jiang, Dianqiang & Zhang, Dalin & Li, Xinyu & Wang, Shibao & Wang, Chenglong & Qin, Hao & Guo, Yanwen & Tian, Wenxi & Su, G.H. & Qiu, Suizheng, 2022. "Fluoride-salt-cooled high-temperature reactors: Review of historical milestones, research status, challenges, and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    12. Xiaoyan Zhang & Muyan Xu & Li Liu & Lang Liu & Mei Wang & Haiwei Ji & KI-IL Song, 2020. "The Concept, Technical System and Heat Transfer Analysis on Phase-Change Heat Storage Backfill for Exploitation of Geothermal Energy," Energies, MDPI, vol. 13(18), pages 1-22, September.
    13. Pei, Huafu & Song, Huaibo & Meng, Fanhua & Liu, Weiling, 2022. "Long-term thermomechanical displacement prediction of energy piles using machine learning techniques," Renewable Energy, Elsevier, vol. 195(C), pages 620-636.
    14. Han, Zengxiao & Guo, Jiangfeng & Huai, Xiulan, 2023. "Theoretical analysis of a novel PCHE with enhanced rib structures for high-power supercritical CO2 Brayton cycle system based on solar energy," Energy, Elsevier, vol. 270(C).
    15. Gaoliang Liao & Zhizhou Li & Feng Zhang & Lijun Liu & Jiaqiang E, 2021. "A Review on the Thermal-Hydraulic Performance and Optimization of Compact Heat Exchangers," Energies, MDPI, vol. 14(19), pages 1-35, September.
    16. Khoshvaght-Aliabadi, Morteza & Ghodrati, Parvaneh & Mahian, Omid & Kang, Yong Tae, 2024. "Performance evaluation of non-uniform twisted designs in precooler of supercritical CO2 power cycle," Energy, Elsevier, vol. 292(C).
    17. Honglei Shi & Guiling Wang & Wei Zhang & Feng Ma & Wenjing Lin & Menglei Ji, 2023. "Predicting the Potential of China’s Geothermal Energy in Industrial Development and Carbon Emission Reduction," Sustainability, MDPI, vol. 15(9), pages 1-16, May.
    18. Mahmoud G. Hemeida & Ashraf M. Hemeida & Tomonobu Senjyu & Dina Osheba, 2022. "Renewable Energy Resources Technologies and Life Cycle Assessment: Review," Energies, MDPI, vol. 15(24), pages 1-36, December.
    19. Xiaoyang Hou & Shuai Zhong & Jian’an Zhao, 2022. "A Critical Review on Decarbonizing Heating in China: Pathway Exploration for Technology with Multi-Sector Applications," Energies, MDPI, vol. 15(3), pages 1-23, February.
    20. Li, Ji & Xu, Wei & Li, Jianfeng & Huang, Shuai & Li, Zhao & Qiao, Biao & Yang, Chun & Sun, Deyu & Zhang, Guangqiu, 2021. "Heat extraction model and characteristics of coaxial deep borehole heat exchanger," Renewable Energy, Elsevier, vol. 169(C), pages 738-751.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223034424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.