IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i2p393-d479144.html
   My bibliography  Save this article

Effect of Helix Angle on the Performance of Helical Vertical Axis Wind Turbine

Author

Listed:
  • Unnikrishnan Divakaran

    (Department of Mechanical Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India)

  • Ajith Ramesh

    (Department of Mechanical Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India)

  • Akram Mohammad

    (Department of Aeronautical Engineering, Faculty of Engineeirng, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Ratna Kishore Velamati

    (Department of Mechanical Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India)

Abstract

The energy crisis has forced researchers to look for various non-conventional energy sources. Wind energy is one of the potential sources, and researchers have invested resources in developing different kinds of wind turbines. Vertical axis wind turbines (VAWT) have received less attention than their horizontal-axis counterparts. A helical-bladed VAWT is preferred because it makes perfect sense as an improvement in design, as they have higher azimuth angles of power generation capabilities. This paper studies the effects of the helix angle of blades in the aerodynamic performance of VAWT using 3D numerical simulations. Three different helix angles of 60°, 90°, and 120° of a three-bladed VAWT operating across different tip speed ratios were studied. Turbulence is modelled using a four-equation transition SST k-ω model (shear stress transport). The 60° helical-bladed VAWT was found to be better performing in comparison with all other helical-bladed and straight-bladed VAWT. The ripple effects on the shaft are also analysed using a standard deviation plot of the moment coefficient generated by a single blade over one complete cycle of its rotation. It was observed that the greater the helix angle, the lower the standard deviation. The paper also tries to analyse the percentage of power generated by each quartile of flow and the contribution of each section of the blade. Ansys FLUENT was employed for the entire study. A comparative study between different helical-bladed VAWT and straight-bladed VAWT was carried out along with wake structure analysis and flow contours for a better understanding of the flow field.

Suggested Citation

  • Unnikrishnan Divakaran & Ajith Ramesh & Akram Mohammad & Ratna Kishore Velamati, 2021. "Effect of Helix Angle on the Performance of Helical Vertical Axis Wind Turbine," Energies, MDPI, vol. 14(2), pages 1-24, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:393-:d:479144
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/2/393/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/2/393/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marsh, Philip & Ranmuthugala, Dev & Penesis, Irene & Thomas, Giles, 2015. "Numerical investigation of the influence of blade helicity on the performance characteristics of vertical axis tidal turbines," Renewable Energy, Elsevier, vol. 81(C), pages 926-935.
    2. Battisti, L. & Persico, G. & Dossena, V. & Paradiso, B. & Raciti Castelli, M. & Brighenti, A. & Benini, E., 2018. "Experimental benchmark data for H-shaped and troposkien VAWT architectures," Renewable Energy, Elsevier, vol. 125(C), pages 425-444.
    3. Bedon, Gabriele & Raciti Castelli, Marco & Benini, Ernesto, 2014. "Proposal for an innovative chord distribution in the Troposkien vertical axis wind turbine concept," Energy, Elsevier, vol. 66(C), pages 689-698.
    4. Li, Qing’an & Maeda, Takao & Kamada, Yasunari & Murata, Junsuke & Shimizu, Kento & Ogasawara, Tatsuhiko & Nakai, Alisa & Kasuya, Takuji, 2016. "Effect of solidity on aerodynamic forces around straight-bladed vertical axis wind turbine by wind tunnel experiments (depending on number of blades)," Renewable Energy, Elsevier, vol. 96(PA), pages 928-939.
    5. Bachant, Peter & Wosnik, Martin, 2015. "Performance measurements of cylindrical- and spherical-helical cross-flow marine hydrokinetic turbines, with estimates of exergy efficiency," Renewable Energy, Elsevier, vol. 74(C), pages 318-325.
    6. Karimian, S.M.H. & Abdolahifar, Abolfazl, 2020. "Performance investigation of a new Darrieus Vertical Axis Wind Turbine," Energy, Elsevier, vol. 191(C).
    7. Lee, Young-Tae & Lim, Hee-Chang, 2015. "Numerical study of the aerodynamic performance of a 500 W Darrieus-type vertical-axis wind turbine," Renewable Energy, Elsevier, vol. 83(C), pages 407-415.
    8. Bedon, Gabriele & De Betta, Stefano & Benini, Ernesto, 2016. "Performance-optimized airfoil for Darrieus wind turbines," Renewable Energy, Elsevier, vol. 94(C), pages 328-340.
    9. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment," Renewable Energy, Elsevier, vol. 107(C), pages 373-385.
    10. Tjiu, Willy & Marnoto, Tjukup & Mat, Sohif & Ruslan, Mohd Hafidz & Sopian, Kamaruzzaman, 2015. "Darrieus vertical axis wind turbine for power generation I: Assessment of Darrieus VAWT configurations," Renewable Energy, Elsevier, vol. 75(C), pages 50-67.
    11. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2019. "On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines," Energy, Elsevier, vol. 180(C), pages 838-857.
    12. Dowon Han & Young Gun Heo & Nak Joon Choi & Sang Hyun Nam & Kyoung Ho Choi & Kyung Chun Kim, 2018. "Design, Fabrication, and Performance Test of a 100-W Helical-Blade Vertical-Axis Wind Turbine at Low Tip-Speed Ratio," Energies, MDPI, vol. 11(6), pages 1-17, June.
    13. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Shimizu, Kento & Ogasawara, Tatsuhiko & Nakai, Alisa & Kasuya, Takuji, 2017. "Effect of rotor aspect ratio and solidity on a straight-bladed vertical axis wind turbine in three-dimensional analysis by the panel method," Energy, Elsevier, vol. 121(C), pages 1-9.
    14. Eboibi, Okeoghene & Danao, Louis Angelo M. & Howell, Robert J., 2016. "Experimental investigation of the influence of solidity on the performance and flow field aerodynamics of vertical axis wind turbines at low Reynolds numbers," Renewable Energy, Elsevier, vol. 92(C), pages 474-483.
    15. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine," Applied Energy, Elsevier, vol. 197(C), pages 132-150.
    16. Sengupta, A.R. & Biswas, A. & Gupta, R., 2016. "Studies of some high solidity symmetrical and unsymmetrical blade H-Darrieus rotors with respect to starting characteristics, dynamic performances and flow physics in low wind streams," Renewable Energy, Elsevier, vol. 93(C), pages 536-547.
    17. Tjiu, Willy & Marnoto, Tjukup & Mat, Sohif & Ruslan, Mohd Hafidz & Sopian, Kamaruzzaman, 2015. "Darrieus vertical axis wind turbine for power generation II: Challenges in HAWT and the opportunity of multi-megawatt Darrieus VAWT development," Renewable Energy, Elsevier, vol. 75(C), pages 560-571.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiang Gao & Shuai Lian & Hongwei Yan, 2022. "Aerodynamic Performance Analysis of Adaptive Drag-Lift Hybrid Type Vertical Axis Wind Turbine," Energies, MDPI, vol. 15(15), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meana-Fernández, Andrés & Solís-Gallego, Irene & Fernández Oro, Jesús Manuel & Argüelles Díaz, Katia María & Velarde-Suárez, Sandra, 2018. "Parametrical evaluation of the aerodynamic performance of vertical axis wind turbines for the proposal of optimized designs," Energy, Elsevier, vol. 147(C), pages 504-517.
    2. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Wang, Ying & Shen, Sheng & Li, Gaohui & Huang, Diangui & Zheng, Zhongquan, 2018. "Investigation on aerodynamic performance of vertical axis wind turbine with different series airfoil shapes," Renewable Energy, Elsevier, vol. 126(C), pages 801-818.
    4. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Sengupta, A.R. & Biswas, A. & Gupta, R., 2019. "Comparison of low wind speed aerodynamics of unsymmetrical blade H-Darrieus rotors-blade camber and curvature signatures for performance improvement," Renewable Energy, Elsevier, vol. 139(C), pages 1412-1427.
    6. Kumar, Rakesh & Sarkar, Shibayan, 2022. "Effect of design parameters on the performance of helical Darrieus hydrokinetic turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    7. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2018. "Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades," Energy, Elsevier, vol. 165(PB), pages 1129-1148.
    8. Hassan, Syed Saddam ul & Javaid, M. Tariq & Rauf, Umar & Nasir, Sheharyar & Shahzad, Aamer & Salamat, Shuaib, 2023. "Systematic investigation of power enhancement of Vertical Axis Wind Turbines using bio-inspired leading edge tubercles," Energy, Elsevier, vol. 270(C).
    9. Reddy, K. Bheemalingeswara & Bhosale, Amit C., 2024. "Effect of number of blades on performance and wake recovery for a vertical axis helical hydrokinetic turbine," Energy, Elsevier, vol. 299(C).
    10. Ma, Ning & Lei, Hang & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhang, Kai & Zhou, Lei & Chen, Caiyong, 2018. "Airfoil optimization to improve power performance of a high-solidity vertical axis wind turbine at a moderate tip speed ratio," Energy, Elsevier, vol. 150(C), pages 236-252.
    11. Kouaissah, O. & Franchina, N. & Siddiqui, M.S. & Persico, G., 2024. "A computational study on the performance and wake development of a tilted H-Shaped VAWT rotor," Renewable Energy, Elsevier, vol. 222(C).
    12. Wong, Kok Hoe & Chong, Wen Tong & Poh, Sin Chew & Shiah, Yui-Chuin & Sukiman, Nazatul Liana & Wang, Chin-Tsan, 2018. "3D CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine," Renewable Energy, Elsevier, vol. 129(PA), pages 32-55.
    13. Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhao, Yongsheng, 2020. "Investigation of V-shaped blade for the performance improvement of vertical axis wind turbines," Applied Energy, Elsevier, vol. 260(C).
    14. Peng, H.Y. & Liu, H.J. & Yang, J.H., 2021. "A review on the wake aerodynamics of H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 232(C).
    15. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    16. Xu, Wenhao & Li, Gaohua & Zheng, Xiaobo & Li, Ye & Li, Shoutu & Zhang, Chen & Wang, Fuxin, 2021. "High-resolution numerical simulation of the performance of vertical axis wind turbines in urban area: Part I, wind turbines on the side of single building," Renewable Energy, Elsevier, vol. 177(C), pages 461-474.
    17. Karimian, S.M.H. & Abdolahifar, Abolfazl, 2020. "Performance investigation of a new Darrieus Vertical Axis Wind Turbine," Energy, Elsevier, vol. 191(C).
    18. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine," Applied Energy, Elsevier, vol. 197(C), pages 132-150.
    19. Douak, M. & Aouachria, Z. & Rabehi, R. & Allam, N., 2018. "Wind energy systems: Analysis of the self-starting physics of vertical axis wind turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1602-1610.
    20. Liu, Qingsong & Miao, Weipao & Ye, Qi & Li, Chun, 2022. "Performance assessment of an innovative Gurney flap for straight-bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 185(C), pages 1124-1138.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:393-:d:479144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.