IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223033765.html
   My bibliography  Save this article

Influence of microgravity on melting performance of a phase-change heat storage tank

Author

Listed:
  • Wang, Yabo
  • Huang, Xinyu
  • Shu, Gao
  • Li, Xueqiang
  • Yang, Xiaohu

Abstract

The development of latent heat storage technology is conducive to the large-scale application of renewable energy. However, the low thermal conductivity of its thermal medium delays the performance of heat storage and release. In this paper, the effect of inclination angle and gravity on the melting performance of the phase-change thermal storage vessel was studied by combining experiment and numerical simulation, and the factors such as phase interface, melting rate, and heat storage are further analyzed. The results show that the decrease in gravity weakens the natural convection and reduces the heat storage capacity. Under the same gravity condition, with the increase of inclination angle, the melting speed of the system gradually decreases, but the heat storage gradually increases. The average temperature uniformity shows that the decrease in gravity makes the heat transfer more uniform. Compared with 1 g, the average temperature uniformity under 0 g is increased by 41.77 %, and the temperature uniformity is the best when the inclination is 60°.

Suggested Citation

  • Wang, Yabo & Huang, Xinyu & Shu, Gao & Li, Xueqiang & Yang, Xiaohu, 2024. "Influence of microgravity on melting performance of a phase-change heat storage tank," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033765
    DOI: 10.1016/j.energy.2023.129982
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223033765
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129982?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Xinyu & Li, Fangfei & Xiao, Tian & Li, Yuanji & Yang, Xiaohu & He, Ya-Ling, 2023. "Structural optimization of melting process of a latent heat energy storage unit and application of flip mechanism," Energy, Elsevier, vol. 280(C).
    2. Lin, Yaxue & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials," Energy, Elsevier, vol. 165(PA), pages 685-708.
    3. Huang, Xinyu & Li, Fangfei & Li, Yuanji & Meng, Xiangzhao & Yang, Xiaohu & Sundén, Bengt, 2023. "Optimization of melting performance of a heat storage tank under rotation conditions: Based on taguchi design and response surface method," Energy, Elsevier, vol. 271(C).
    4. Yang, Xiaohu & Guo, Zengxu & Liu, Yanhua & Jin, Liwen & He, Ya-Ling, 2019. "Effect of inclination on the thermal response of composite phase change materials for thermal energy storage," Applied Energy, Elsevier, vol. 238(C), pages 22-33.
    5. Yan, Tian & Zhou, Xuan & Xu, Xinhua & Yu, Jinghua & Li, Xianting, 2022. "Parametric analysis on performances of the pipe-encapsulated PCM (PenPCM) wall system coupled with gravity heat-pipe and nocturnal radiant cooler," Renewable Energy, Elsevier, vol. 196(C), pages 161-180.
    6. Zhang, Yuang & Wang, Jiasheng & Qiu, Jinjing & Jin, Xin & Umair, Malik Muhammad & Lu, Rongwen & Zhang, Shufen & Tang, Bingtao, 2019. "Ag-graphene/PEG composite phase change materials for enhancing solar-thermal energy conversion and storage capacity," Applied Energy, Elsevier, vol. 237(C), pages 83-90.
    7. Soni, Vikram & Kumar, Arvind & Jain, V.K., 2018. "Performance evaluation of nano-enhanced phase change materials during discharge stage in waste heat recovery," Renewable Energy, Elsevier, vol. 127(C), pages 587-601.
    8. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    9. Peng, Hao & Guo, Wenhua & Li, Meilin & Feng, Shiyu, 2021. "Melting behavior and heat transfer performance of gallium for spacecraft thermal energy storage application," Energy, Elsevier, vol. 228(C).
    10. Li, Xinyi & Niu, Cong & Li, Xiangxuan & Ma, Ting & Lu, Lin & Wang, Qiuwang, 2020. "Pore-scale investigation on effects of void cavity distribution on melting of composite phase change materials," Applied Energy, Elsevier, vol. 275(C).
    11. Huang, Xinyu & Li, Fangfei & Xiao, Tian & Guo, Junfei & Wang, Fan & Gao, Xinyu & Yang, Xiaohu & He, Ya-Ling, 2023. "Investigation and optimization of solidification performance of a triplex-tube latent heat thermal energy storage system by rotational mechanism," Applied Energy, Elsevier, vol. 331(C).
    12. Li, Xinyi & Ma, Ting & Liu, Jun & Zhang, Hao & Wang, Qiuwang, 2018. "Pore-scale investigation of gravity effects on phase change heat transfer characteristics using lattice Boltzmann method," Applied Energy, Elsevier, vol. 222(C), pages 92-103.
    13. Modi, Nishant & Wang, Xiaolin & Negnevitsky, Michael, 2023. "Experimental investigation of the effects of inclination, fin height, and perforation on the thermal performance of a longitudinal finned latent heat thermal energy storage," Energy, Elsevier, vol. 274(C).
    14. Huang, Sheng & Lu, Jun & Li, Yongcai, 2022. "Numerical study on the influence of inclination angle on the melting behaviour of metal foam-PCM latent heat storage units," Energy, Elsevier, vol. 239(PE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Xinyu & Li, Fangfei & Liu, Zhengguang & Gao, Xinyu & Yang, Xiaohu & Yan, Jinyue, 2023. "Design and optimization of a novel phase change photovoltaic thermal utilization structure for building envelope," Renewable Energy, Elsevier, vol. 218(C).
    2. Cui, Wei & Si, Tianyu & Li, Xiangxuan & Li, Xinyi & Lu, Lin & Ma, Ting & Wang, Qiuwang, 2022. "Heat transfer enhancement of phase change materials embedded with metal foam for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    3. Yan, Peiliang & Fan, Weijun & Han, Yu & Ding, Hongbing & Wen, Chuang & Elbarghthi, Anas F.A. & Yang, Yan, 2023. "Leaf-vein bionic fin configurations for enhanced thermal energy storage performance of phase change materials in smart heating and cooling systems," Applied Energy, Elsevier, vol. 346(C).
    4. Chen, Xue & Li, Xiaolei & Xia, Xinlin & Sun, Chuang & Liu, Rongqiang, 2021. "Thermal storage analysis of a foam-filled PCM heat exchanger subjected to fluctuating flow conditions," Energy, Elsevier, vol. 216(C).
    5. Li, Xinyi & Duan, Jitong & Simon, Terrence & Ma, Ting & Cui, Tianhong & Wang, Qiuwang, 2021. "Nonuniform metal foam design and pore-scale analysis of a tilted composite phase change material system for photovoltaics thermal management," Applied Energy, Elsevier, vol. 298(C).
    6. Tao Ning & Xinyu Huang & Junwei Su & Xiaohu Yang, 2023. "Design and Research of Heat Storage Enhancement by Innovative Wave Fin in a Hot Water–Oil-Displacement System," Sustainability, MDPI, vol. 15(22), pages 1-17, November.
    7. Li, Yuanji & Niu, Zhaoyang & Gao, Xinyu & Ji, Ruiyang & Yang, Xiaohu & Yan, Jinyue, 2023. "Experimental and numerical investigations on tilt filling design of metal foam in a heat storage tank," Renewable Energy, Elsevier, vol. 217(C).
    8. Huang, Xinyu & Li, Fangfei & Xiao, Tian & Li, Yuanji & Yang, Xiaohu & He, Ya-Ling, 2023. "Structural optimization of melting process of a latent heat energy storage unit and application of flip mechanism," Energy, Elsevier, vol. 280(C).
    9. Najafpour, Nategheh & Adibi, Omid, 2024. "Investigating the effects of nano-enhanced phase change material on melting performance of LHTES with novel perforated hybrid stair fins," Energy, Elsevier, vol. 290(C).
    10. Li, Xinyi & Cui, Wei & Simon, Terrence & Ma, Ting & Cui, Tianhong & Wang, Qiuwang, 2021. "Pore-scale analysis on selection of composite phase change materials for photovoltaic thermal management," Applied Energy, Elsevier, vol. 302(C).
    11. Zhang, Shuai & Feng, Daili & Shi, Lei & Wang, Li & Jin, Yingai & Tian, Limei & Li, Ziyuan & Wang, Guoyong & Zhao, Lei & Yan, Yuying, 2021. "A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Peng, Hao & Guo, Wenhua & Feng, Shiyu & Shen, Yijun, 2022. "A novel thermoelectric energy harvester using gallium as phase change material for spacecraft power application," Applied Energy, Elsevier, vol. 322(C).
    13. Li, Pengcheng & Cao, Qing & Li, Jing & Lin, Haiwei & Wang, Yandong & Gao, Guangtao & Pei, Gang & Jie, Desuan & Liu, Xunfen, 2021. "An innovative approach to recovery of fluctuating industrial exhaust heat sources using cascade Rankine cycle and two-stage accumulators," Energy, Elsevier, vol. 228(C).
    14. Pandey, Mayank & Deshmukh, Kalim & Raman, Akhila & Asok, Aparna & Appukuttan, Saritha & Suman, G.R., 2024. "Prospects of MXene and graphene for energy storage and conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    15. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    16. Jiang, Liang & Lei, Yuan & Liu, Qinfeng & Lei, Jingxin, 2020. "Polyethylene glycol based self-luminous phase change materials for both thermal and light energy storage," Energy, Elsevier, vol. 193(C).
    17. Wang, Hanxi & Xu, Jianling & Sheng, Lianxi, 2019. "Study on the comprehensive utilization of city kitchen waste as a resource in China," Energy, Elsevier, vol. 173(C), pages 263-277.
    18. Bing, Naici & Yang, Jie & Gao, Huan & Xie, Huaqing & Yu, Wei, 2021. "Unsaturated polyester resin supported form-stable phase change materials with enhanced thermal conductivity for solar energy storage and conversion," Renewable Energy, Elsevier, vol. 173(C), pages 926-933.
    19. Giovanni Salvatore Sau & Valerio Tripi & Anna Chiara Tizzoni & Raffaele Liberatore & Emiliana Mansi & Annarita Spadoni & Natale Corsaro & Mauro Capocelli & Tiziano Delise & Anna Della Libera, 2021. "High-Temperature Chloride-Carbonate Phase Change Material: Thermal Performances and Modelling of a Packed Bed Storage System for Concentrating Solar Power Plants," Energies, MDPI, vol. 14(17), pages 1-17, August.
    20. Li, Han & Li, Jinchao & Kong, Xiangfei & Long, Hao & Yang, Hua & Yao, Chengqiang, 2020. "A novel solar thermal system combining with active phase-change material heat storage wall (STS-APHSW): Dynamic model, validation and thermal performance," Energy, Elsevier, vol. 201(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.