IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v322y2022ics0306261922008625.html
   My bibliography  Save this article

A novel thermoelectric energy harvester using gallium as phase change material for spacecraft power application

Author

Listed:
  • Peng, Hao
  • Guo, Wenhua
  • Feng, Shiyu
  • Shen, Yijun

Abstract

Thermoelectric generator (TEG) integrated with phase change material (PCM) is suitable for spacecraft power supply under environment with extreme temperature variation, but the low solid–liquid phase change rate restrains system performance. To increase output energy and thermoelectric conversion efficiency, a novel thermoelectric energy harvester (TEH) integrating TEG with gallium (Ga) is proposed. A numerical model for predicting system performance is established, and validated by experimental results. The open circuit voltage (U), maximum output power (Pmax), output energy (E) and thermoelectric conversion efficiency (η) for Ga-TEH system under microgravity and normal gravity with environment temperature ranging from 100 to −50 °C are investigated. The results show that compared with TEH using conventional PCM n-octadecane (C18), the adoption of Ga significantly improves system performance due to higher heat conduction ability and larger volumetric latent heat of Ga; U, Pmax and η for Ga-TEH are maximally 9.5, 101.8 and 12.7 times those for C18-TEH under microgravity respectively, and maximally 7.3, 58.7 and 9.4 times those for C18-TEH under normal gravity respectively; E for Ga-TEH are 9.9 and 9.0 times those for C18-TEH under microgravity and normal gravity respectively. The designed Ga-TEH can be used for wireless sensor networks power supply in spacecraft.

Suggested Citation

  • Peng, Hao & Guo, Wenhua & Feng, Shiyu & Shen, Yijun, 2022. "A novel thermoelectric energy harvester using gallium as phase change material for spacecraft power application," Applied Energy, Elsevier, vol. 322(C).
  • Handle: RePEc:eee:appene:v:322:y:2022:i:c:s0306261922008625
    DOI: 10.1016/j.apenergy.2022.119548
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922008625
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119548?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xinyi & Zhu, Ziliang & Xu, Zirui & Ma, Ting & Zhang, Hao & Liu, Jun & Wang, Xian & Wang, Qiuwang, 2019. "A three-dimensional pore-scale lattice Boltzmann model for investigating the supergravity effects on charging process," Applied Energy, Elsevier, vol. 254(C).
    2. Cui, Tengfei & Xuan, Yimin & Yin, Ershuai & Li, Qiang & Li, Dianhong, 2017. "Experimental investigation on potential of a concentrated photovoltaic-thermoelectric system with phase change materials," Energy, Elsevier, vol. 122(C), pages 94-102.
    3. Atouei, S. Ahmadi & Rezania, A. & Ranjbar, A.A. & Rosendahl, L.A., 2018. "Protection and thermal management of thermoelectric generator system using phase change materials: An experimental investigation," Energy, Elsevier, vol. 156(C), pages 311-318.
    4. Peng, Hao & Guo, Wenhua & Li, Meilin & Feng, Shiyu, 2021. "Melting behavior and heat transfer performance of gallium for spacecraft thermal energy storage application," Energy, Elsevier, vol. 228(C).
    5. Darkwa, J. & Calautit, J. & Du, D. & Kokogianakis, G., 2019. "A numerical and experimental analysis of an integrated TEG-PCM power enhancement system for photovoltaic cells," Applied Energy, Elsevier, vol. 248(C), pages 688-701.
    6. Madruga, Santiago, 2021. "Modeling of enhanced micro-energy harvesting of thermal ambient fluctuations with metallic foams embedded in Phase Change Materials," Renewable Energy, Elsevier, vol. 168(C), pages 424-437.
    7. Zhu, Wei & Tu, Yubin & Deng, Yuan, 2018. "Multi-parameter optimization design of thermoelectric harvester based on phase change material for space generation," Applied Energy, Elsevier, vol. 228(C), pages 873-880.
    8. Yang, Xiaohu & Wei, Pan & Wang, Xinyi & He, Ya-Ling, 2020. "Gradient design of pore parameters on the melting process in a thermal energy storage unit filled with open-cell metal foam," Applied Energy, Elsevier, vol. 268(C).
    9. Li, Xinyi & Ma, Ting & Liu, Jun & Zhang, Hao & Wang, Qiuwang, 2018. "Pore-scale investigation of gravity effects on phase change heat transfer characteristics using lattice Boltzmann method," Applied Energy, Elsevier, vol. 222(C), pages 92-103.
    10. Tu, Yubin & Zhu, Wei & Lu, Tianqi & Deng, Yuan, 2017. "A novel thermoelectric harvester based on high-performance phase change material for space application," Applied Energy, Elsevier, vol. 206(C), pages 1194-1202.
    11. Yang, Xiaohu & Guo, Junfei & Yang, Bo & Cheng, Haonan & Wei, Pan & He, Ya-Ling, 2020. "Design of non-uniformly distributed annular fins for a shell-and-tube thermal energy storage unit," Applied Energy, Elsevier, vol. 279(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Kunlin & Li, Jiahui & Yu, Jianchi & Fu, Chuanjie & Qin, Jiang & Jing, Wuxing, 2023. "Novel thermoelectric generator enhanced supercritical carbon dioxide closed-Brayton-cycle power generation systems: Performance comparison and configuration optimization," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borhani, S.M. & Hosseini, M.J. & Pakrouh, R. & Ranjbar, A.A. & Nourian, A., 2021. "Performance enhancement of a thermoelectric harvester with a PCM/Metal foam composite," Renewable Energy, Elsevier, vol. 168(C), pages 1122-1140.
    2. Meng, Jing-Hui & Gao, De-Yang & Liu, Yan & Zhang, Kai & Lu, Gui, 2022. "Heat transfer mechanism and structure design of phase change materials to improve thermoelectric device performance," Energy, Elsevier, vol. 245(C).
    3. Wang, Yijiang & Peng, Yizhu & Guo, Kehui & Zheng, Xiaofeng & Darkwa, Jo & Zhong, Hua, 2021. "Experimental investigation on performance improvement of thermoelectric generator based on phase change materials and heat transfer enhancement," Energy, Elsevier, vol. 229(C).
    4. Xinguo Sun & Jasim M. Mahdi & Hayder I. Mohammed & Hasan Sh. Majdi & Wang Zixiong & Pouyan Talebizadehsardari, 2021. "Solidification Enhancement in a Triple-Tube Latent Heat Energy Storage System Using Twisted Fins," Energies, MDPI, vol. 14(21), pages 1-23, November.
    5. He, Y. & Tao, Y.B. & Ye, H., 2023. "Periodic energy transmission and regulation of photovoltaic-phase change material-thermoelectric coupled system under space conditions," Energy, Elsevier, vol. 263(PC).
    6. Wang, Yilin & Cheng, Kunlin & Dang, Chaolei & Wang, Cong & Qin, Jiang & Huang, Hongyan, 2023. "Performance and experimental investigation for a novel heat storage based thermoelectric harvester for hypersonic vehicles," Energy, Elsevier, vol. 263(PD).
    7. Zhaochun Shi & Guohua Wang & Chunli Liu & Qiang Lv & Baoli Gong & Yingchao Zhang & Yuying Yan, 2023. "Optimizing the Transient Performance of Thermoelectric Generator with PCM by Taguchi Method," Energies, MDPI, vol. 16(2), pages 1-16, January.
    8. Madruga, Santiago & Mendoza, Carolina, 2022. "Introducing a new concept for enhanced micro-energy harvesting of thermal fluctuations through the Marangoni effect," Applied Energy, Elsevier, vol. 306(PA).
    9. Ma, Tao & Guo, Zichang & Shen, Lu & Liu, Xing & Chen, Zhenwu & Zhou, Yong & Zhang, Xiaochun, 2021. "Performance modelling of photovoltaic modules under actual operating conditions considering loss mechanism and energy distribution," Applied Energy, Elsevier, vol. 298(C).
    10. Dai, Renkun & Li, Wei & Mostaghimi, Javad & Wang, Qiuwang & Zeng, Min, 2020. "On the optimal heat source location of partially heated energy storage process using the newly developed simplified enthalpy based lattice Boltzmann method," Applied Energy, Elsevier, vol. 275(C).
    11. Gulfam, Raza & Zhang, Peng & Meng, Zhaonan, 2019. "Advanced thermal systems driven by paraffin-based phase change materials – A review," Applied Energy, Elsevier, vol. 238(C), pages 582-611.
    12. Li, Xinyi & Duan, Jitong & Simon, Terrence & Ma, Ting & Cui, Tianhong & Wang, Qiuwang, 2021. "Nonuniform metal foam design and pore-scale analysis of a tilted composite phase change material system for photovoltaics thermal management," Applied Energy, Elsevier, vol. 298(C).
    13. Mohammadnia, Ali & Ziapour, Behrooz M. & Sedaghati, Farzad & Rosendahl, Lasse & Rezania, Alireza, 2021. "Fan operating condition effect on performance of self- cooling thermoelectric generator system," Energy, Elsevier, vol. 224(C).
    14. Yousefi, Esmaeil & Nejad, Ali Abbas & Rezania, Alireza, 2022. "Higher power output in thermoelectric generator integrated with phase change material and metal foams under transient boundary condition," Energy, Elsevier, vol. 256(C).
    15. Hamidi, E. & Ganesan, P.B. & Sharma, R.K. & Yong, K.W., 2023. "Computational study of heat transfer enhancement using porous foams with phase change materials: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    16. Huang, Xinyu & Yao, Shouguang & Yang, Xiaohu & Zhou, Rui, 2022. "Melting performance assessments on a triplex-tube thermal energy storage system: Optimization based on response surface method with natural convection," Renewable Energy, Elsevier, vol. 188(C), pages 890-910.
    17. Lv, Song & Yang, Jiahao & Ren, Juwen & Zhang, Bolong & Lai, Yin & Chang, Zhihao, 2023. "Research and numerical analysis on performance optimization of photovoltaic-thermoelectric system incorporated with phase change materials," Energy, Elsevier, vol. 263(PC).
    18. Khoshnazm, Mohammad Javad & Marzban, Ali & Azimi, Neda, 2023. "Performance enhancement of photovoltaic panels integrated with thermoelectric generators and phase change materials: Optimization and analysis of thermoelectric arrangement," Energy, Elsevier, vol. 267(C).
    19. Aljaghtham, Mutabe & Celik, Emrah, 2022. "Design of cascade thermoelectric generation systems with improved thermal reliability," Energy, Elsevier, vol. 243(C).
    20. Hong, Bing-Hua & Huang, Xiao-Yan & He, Jian-Wei & Cai, Yang & Wang, Wei-Wei & Zhao, Fu-Yun, 2023. "Round-the-clock performance of solar thermoelectric wall with phase change material in subtropical climate: Critical analysis and parametric investigations," Energy, Elsevier, vol. 272(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:322:y:2022:i:c:s0306261922008625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.