IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ipas0360544223013026.html
   My bibliography  Save this article

Regional energy policies for electrifying car fleets

Author

Listed:
  • Fusco Rovai, Fernando
  • Regina da Cal Seixas, Sônia
  • Keutenedjian Mady, Carlos Eduardo

Abstract

The mobility sector must reduce its carbon footprint over the vehicle life cycle, including production, usage, and recycling. The carbon footprint of vehicle usage varies with the mileage and the profile, urban or highway, and the carbon intensity of the energy source, emphasizing regional specificities: biofuels and the renewability of the electrical matrix. Battery-electric vehicles offer higher energy efficiencies, making passenger fleet electrification an effective way to reduce energy demand. However, transitioning to electric vehicles is challenging due to high costs and the required recharging infrastructure. We compared the life-cycle simulations of a conventional passenger car to its fully electrified or hybrid version. We found that the carbon footprint of a battery-electric vehicle is more than five times that of a conventional internal combustion-vehicle. Depending on the considered boundary conditions, the desired CO2e breakeven of a battery electric vehicle could not be achieved. Therefore, conducting a comprehensive and specific analysis of each country is crucial to optimize solutions for reducing greenhouse gas emissions. We analyzed the specificities of the USA, China, EU, and Brazil. In conclusion, this study provides insights into the challenges and opportunities and hopes to inform policy-makers to choose paths that reduce greenhouse gas emissions properly.

Suggested Citation

  • Fusco Rovai, Fernando & Regina da Cal Seixas, Sônia & Keutenedjian Mady, Carlos Eduardo, 2023. "Regional energy policies for electrifying car fleets," Energy, Elsevier, vol. 278(PA).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:pa:s0360544223013026
    DOI: 10.1016/j.energy.2023.127908
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223013026
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127908?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rafael Fernandes Mosquim & Carlos Eduardo Keutenedjian Mady, 2022. "Performance and Efficiency Trade-Offs in Brazilian Passenger Vehicle Fleet," Energies, MDPI, vol. 15(15), pages 1-22, July.
    2. Buberger, Johannes & Kersten, Anton & Kuder, Manuel & Eckerle, Richard & Weyh, Thomas & Thiringer, Torbjörn, 2022. "Total CO2-equivalent life-cycle emissions from commercially available passenger cars," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Onat, Nuri Cihat & Kucukvar, Murat & Tatari, Omer, 2015. "Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States," Applied Energy, Elsevier, vol. 150(C), pages 36-49.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kolahchian Tabrizi, Mehrshad & Bonalumi, Davide & Lozza, Giovanni Gustavo, 2024. "Analyzing the global warming potential of the production and utilization of lithium-ion batteries with nickel-manganese-cobalt cathode chemistries in European Gigafactories," Energy, Elsevier, vol. 288(C).
    2. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    3. Rafael Fernandes Mosquim & Flávia Mendes de Almeida Collaço & Carlos Eduardo Keutenedjian Mady, 2024. "Toward a Direct CO 2 Tax for the Brazilian LDV Fleet," Energies, MDPI, vol. 17(11), pages 1-24, May.
    4. Fernando Fusco Rovai & Carlos Eduardo Keutenedjian Mady, 2024. "Thermodynamic Model for Cold-Phase Influence on Light Vehicles’ Fuel Consumption," Energies, MDPI, vol. 17(16), pages 1-14, August.
    5. Henrique Naim Finianos Feliciano & Fernando Fusco Rovai & Carlos Eduardo Keutenedjian Mady, 2023. "Energy, Exergy, and Emissions Analyses of Internal Combustion Engines and Battery Electric Vehicles for the Brazilian Energy Mix," Energies, MDPI, vol. 16(17), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Jian & Zhang, Tiezhu & Hong, Jichao & Zhang, Hongxin & Zhao, Qinghai & Meng, Zewen, 2021. "Research on driving control strategy and Fuzzy logic optimization of a novel mechatronics-electro-hydraulic power coupling electric vehicle," Energy, Elsevier, vol. 233(C).
    2. Ruan, Jiageng & Walker, Paul & Zhang, Nong, 2016. "A comparative study energy consumption and costs of battery electric vehicle transmissions," Applied Energy, Elsevier, vol. 165(C), pages 119-134.
    3. Ruan, Jiageng & Walker, Paul D. & Watterson, Peter A. & Zhang, Nong, 2016. "The dynamic performance and economic benefit of a blended braking system in a multi-speed battery electric vehicle," Applied Energy, Elsevier, vol. 183(C), pages 1240-1258.
    4. Paul Baustert & Tomás Navarrete Gutiérrez & Thomas Gibon & Laurent Chion & Tai-Yu Ma & Gabriel Leite Mariante & Sylvain Klein & Philippe Gerber & Enrico Benetto, 2019. "Coupling Activity-Based Modeling and Life Cycle Assessment—A Proof-of-Concept Study on Cross-Border Commuting in Luxembourg," Sustainability, MDPI, vol. 11(15), pages 1-24, July.
    5. Daraei, Mahsa & Avelin, Anders & Dotzauer, Erik & Thorin, Eva, 2019. "Evaluation of biofuel production integrated with existing CHP plants and the impacts on production planning of the system – A case study," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    6. Wee, Sherilyn & Coffman, Makena & Allen, Scott, 2020. "EV driver characteristics: Evidence from Hawaii," Transport Policy, Elsevier, vol. 87(C), pages 33-40.
    7. Maxwell Woody & Michael T. Craig & Parth T. Vaishnav & Geoffrey M. Lewis & Gregory A. Keoleian, 2022. "Optimizing future cost and emissions of electric delivery vehicles," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1108-1122, June.
    8. Siqin Xiong & Junping Ji & Xiaoming Ma, 2019. "Comparative Life Cycle Energy and GHG Emission Analysis for BEVs and PhEVs: A Case Study in China," Energies, MDPI, vol. 12(5), pages 1-17, March.
    9. Coilín ÓhAiseadha & Gerré Quinn & Ronan Connolly & Michael Connolly & Willie Soon, 2020. "Energy and Climate Policy—An Evaluation of Global Climate Change Expenditure 2011–2018," Energies, MDPI, vol. 13(18), pages 1-49, September.
    10. Xianchun Tan & Yuan Zeng & Baihe Gu & Yi Wang & Baoguang Xu, 2018. "Scenario Analysis of Urban Road Transportation Energy Demand and GHG Emissions in China—A Case Study for Chongqing," Sustainability, MDPI, vol. 10(6), pages 1-32, June.
    11. Sebastian Grzesiak & Adam Sulich, 2022. "Car Engines Comparative Analysis: Sustainable Approach," Energies, MDPI, vol. 15(14), pages 1-15, July.
    12. Antje-Mareike Dietrich & Christian Leßmann & Arne Steinkraus, 2016. "Kaufprämien für Elektroautos: Politik auf dem Irrweg?," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 69(11), pages 21-26, June.
    13. Sergio Maria Patella & Flavio Scrucca & Francesco Asdrubali & Stefano Carrese, 2019. "Traffic Simulation-Based Approach for A Cradle-to-Grave Greenhouse Gases Emission Model," Sustainability, MDPI, vol. 11(16), pages 1-14, August.
    14. Kain Glensor & María Rosa Muñoz B., 2019. "Life-Cycle Assessment of Brazilian Transport Biofuel and Electrification Pathways," Sustainability, MDPI, vol. 11(22), pages 1-31, November.
    15. Wen, Jianping & Zhao, Dan & Zhang, Chuanwei, 2020. "An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency," Renewable Energy, Elsevier, vol. 162(C), pages 1629-1648.
    16. Shafique, Muhammad & Azam, Anam & Rafiq, Muhammad & Luo, Xiaowei, 2022. "Life cycle assessment of electric vehicles and internal combustion engine vehicles: A case study of Hong Kong," Research in Transportation Economics, Elsevier, vol. 91(C).
    17. Fuad Un-Noor & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Mohammad Nurunnabi Mollah & Eklas Hossain, 2017. "A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development," Energies, MDPI, vol. 10(8), pages 1-84, August.
    18. Onat, Nuri Cihat & Kucukvar, Murat & Aboushaqrah, Nour N.M. & Jabbar, Rateb, 2019. "How sustainable is electric mobility? A comprehensive sustainability assessment approach for the case of Qatar," Applied Energy, Elsevier, vol. 250(C), pages 461-477.
    19. Doluweera, Ganesh & Hahn, Fabian & Bergerson, Joule & Pruckner, Marco, 2020. "A scenario-based study on the impacts of electric vehicles on energy consumption and sustainability in Alberta," Applied Energy, Elsevier, vol. 268(C).
    20. Sanguinetti, Angela & Alston-Stepnitz, Eli & Cimene, Angelika, 2020. "Facilitating Electric Vehicle Adoption with Vehicle Cost Calculators," Institute of Transportation Studies, Working Paper Series qt368290kp, Institute of Transportation Studies, UC Davis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:pa:s0360544223013026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.