IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223024714.html
   My bibliography  Save this article

A hybrid RSM-GA-PSO approach on optimization of process intensification of linseed biodiesel synthesis using an ultrasonic reactor: Enhancing biodiesel properties and engine characteristics with ternary fuel blends

Author

Listed:
  • Ahmad, Aqueel
  • Yadav, Ashok Kumar
  • Singh, Achhaibar
  • Singh, Dinesh Kumar
  • Ağbulut, Ümit

Abstract

The depletion of fossil fuels necessitates the development of sustainable and energy-efficient techniques for biodiesel production. In recent years, cavitation reactors have emerged as a viable alternative to conventional biodiesel synthesis methods due to their superior conversion rates and shorter processing times. These reactors possess a high surface-to-volume ratio and facilitate efficient heat and mass transfer. This study aims to optimize the production of biodiesel from linseed oil using a novel ultrasonic cavitation reactor through a hybrid approach. In order to achieve this, an L50 orthogonal array with five factors and three levels was developed using a Box-Behnken design based on response surface methodology (RSM). These factors included the molar ratio (4:1, 6:1, and 8:1), ultrasonic power (100, 125, and 150 W), temperature (25, 35, and 45 °C), time (3, 6, and 9 min), and ultrasonic frequency (25, 30, and 35 kHz). The parameters were optimized using RSM-based desirability, genetic algorithm (GA), and particle swarm optimization (PSO) approaches. The results indicated that the RSM-based optimization approach outperformed the other methods. The optimal combination of parameters obtained through RSM consisted of molar ratio of 6.58:1, ultrasonic power of 133.65 W, temperature of 37.44 °C, time of 7.71 min, and pulse frequency of 26.29 kHz. This combination resulted in a biodiesel yield of 95.25%. Furthermore, this study explored the impact of different linseed oil methyl ester, octanol, and diesel blends (B10, B20, B30, B10 (O-10), and B20 (O-10)) on engine performance and emission characteristics. The B20 (O-10) blend exhibited significant potential for simultaneously reducing emissions and enhancing engine performance. When used as engine fuel, the B20 (O-10) blend increased brake thermal efficiency (BTE) by 0.848%, decreased brake specific fuel consumption (BSFC) by 0.607%, and decreased CO, HC, and NOx emissions by 18.75%, 6.55%, and 0.72%, respectively, compared to pure diesel at rated power.

Suggested Citation

  • Ahmad, Aqueel & Yadav, Ashok Kumar & Singh, Achhaibar & Singh, Dinesh Kumar & Ağbulut, Ümit, 2024. "A hybrid RSM-GA-PSO approach on optimization of process intensification of linseed biodiesel synthesis using an ultrasonic reactor: Enhancing biodiesel properties and engine characteristics with terna," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223024714
    DOI: 10.1016/j.energy.2023.129077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223024714
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suresh, T. & Sivarajasekar, N. & Balasubramani, K., 2021. "Enhanced ultrasonic assisted biodiesel production from meat industry waste (pig tallow) using green copper oxide nanocatalyst: Comparison of response surface and neural network modelling," Renewable Energy, Elsevier, vol. 164(C), pages 897-907.
    2. Taherkhani, M. & Sadrameli, S.M., 2018. "An improvement and optimization study of biodiesel production from linseed via in-situ transesterification using a co-solvent," Renewable Energy, Elsevier, vol. 119(C), pages 787-794.
    3. Das, Sutapa & Goud, Vaibhav V., 2021. "RSM-optimised slow pyrolysis of rice husk for bio-oil production and its upgradation," Energy, Elsevier, vol. 225(C).
    4. Ghobadian, B. & Rahimi, H. & Nikbakht, A.M. & Najafi, G. & Yusaf, T.F., 2009. "Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network," Renewable Energy, Elsevier, vol. 34(4), pages 976-982.
    5. Sun, Xun & Liu, Shuai & Manickam, Sivakumar & Tao, Yang & Yoon, Joon Yong & Xuan, Xiaoxu, 2023. "Intensification of biodiesel production by hydrodynamic cavitation: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    6. Konjević, Lucija & Racar, Marko & Ilinčić, Petar & Faraguna, Fabio, 2023. "A comprehensive study on application properties of diesel blends with propanol, butanol, isobutanol, pentanol, hexanol, octanol and dodecanol," Energy, Elsevier, vol. 262(PA).
    7. Gómez-Castro, F.I. & Gutiérrez-Antonio, C. & Romero-Izquierdo, A.G. & May-Vázquez, M.M. & Hernández, S., 2023. "Intensified technologies for the production of triglyceride-based biofuels: Current status and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    8. Ramachandran, K. & Suganya, T. & Nagendra Gandhi, N. & Renganathan, S., 2013. "Recent developments for biodiesel production by ultrasonic assist transesterification using different heterogeneous catalyst: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 410-418.
    9. Ashok, B. & Nanthagopal, K. & Darla, Sivaprasad & Chyuan, Ong Hwai & Ramesh, A. & Jacob, Ashwin & Sahil, G. & Thiyagarajan, S. & Geo, V. Edwin, 2019. "Comparative assessment of hexanol and decanol as oxygenated additives with calophyllum inophyllum biodiesel," Energy, Elsevier, vol. 173(C), pages 494-510.
    10. Masera, Kemal & Hossain, Abul Kalam, 2023. "Advancement of biodiesel fuel quality and NOx emission control techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    11. Nimmanterdwong, Prathana & Chalermsinsuwan, Benjapon & Piumsomboon, Pornpote, 2023. "Optimizing utilization pathways for biomass to chemicals and energy by integrating emergy analysis and particle swarm optimization (PSO)," Renewable Energy, Elsevier, vol. 202(C), pages 1448-1459.
    12. Xie, Wenlei & Li, Jiangbo, 2023. "Magnetic solid catalysts for sustainable and cleaner biodiesel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    13. Bahadorian, Amirmahdi & Sadrameli, Seyed Mojtaba & Pahlavanzadeh, Hassan & Ilani Kashkouli, Mohammad Nabi, 2023. "Optimization study of linseed biodiesel production via in-situ transesterification and slow pyrolysis of obtained linseed residue," Renewable Energy, Elsevier, vol. 203(C), pages 10-19.
    14. Aghbashlo, Mortaza & Hosseinpour, Soleiman & Tabatabaei, Meisam & Dadak, Ali, 2017. "Fuzzy modeling and optimization of the synthesis of biodiesel from waste cooking oil (WCO) by a low power, high frequency piezo-ultrasonic reactor," Energy, Elsevier, vol. 132(C), pages 65-78.
    15. Sajid, Zaman & Khan, Faisal & Zhang, Yan, 2016. "Process simulation and life cycle analysis of biodiesel production," Renewable Energy, Elsevier, vol. 85(C), pages 945-952.
    16. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E., 2013. "Evaluation of biodiesel blending, engine performance and emissions characteristics of Jatropha curcas methyl ester: Malaysian perspective," Energy, Elsevier, vol. 55(C), pages 879-887.
    17. Soudagar, Manzoore Elahi M. & Mujtaba, M.A. & Safaei, Mohammad Reza & Afzal, Asif & V, Dhana Raju & Ahmed, Waqar & Banapurmath, N.R. & Hossain, Nazia & Bashir, Shahid & Badruddin, Irfan Anjum & Goodar, 2021. "Effect of Sr@ZnO nanoparticles and Ricinus communis biodiesel-diesel fuel blends on modified CRDI diesel engine characteristics," Energy, Elsevier, vol. 215(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Usman & Haris Hussain & Fahid Riaz & Muneeb Irshad & Rehmat Bashir & Muhammad Haris Shah & Adeel Ahmad Zafar & Usman Bashir & M. A. Kalam & M. A. Mujtaba & Manzoore Elahi M. Soudagar, 2021. "Artificial Neural Network Led Optimization of Oxyhydrogen Hybridized Diesel Operated Engine," Sustainability, MDPI, vol. 13(16), pages 1-24, August.
    2. Khounani, Zahra & Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Sulaiman, Alawi & Goli, Sayed Amir Hossein & Tavassoli-Kafrani, Elham & Ghaffari, Akram & Rajaeifar, Mohammad Ali & Kim, Ki-Hyun, 2020. "Unlocking the potential of walnut husk extract in the production of waste cooking oil-based biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Aghbashlo, Mortaza & Tabatabaei, Meisam & Amid, Sama & Hosseinzadeh-Bandbafha, Homa & Khoshnevisan, Benyamin & Kianian, Ghaem, 2020. "Life cycle assessment analysis of an ultrasound-assisted system converting waste cooking oil into biodiesel," Renewable Energy, Elsevier, vol. 151(C), pages 1352-1364.
    4. Bahadorian, Amirmahdi & Sadrameli, Seyed Mojtaba & Pahlavanzadeh, Hassan & Ilani Kashkouli, Mohammad Nabi, 2023. "Optimization study of linseed biodiesel production via in-situ transesterification and slow pyrolysis of obtained linseed residue," Renewable Energy, Elsevier, vol. 203(C), pages 10-19.
    5. Vigneshwar, V. & Krishnan, S. Yogesh & Kishna, R. Susanth & Srinath, R. & Ashok, B. & Nanthagopal, K., 2019. "Comprehensive review of Calophyllum inophyllum as a feasible alternate energy for CI engine applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    6. Zhang, Gaoqiang & Xie, Wenlei, 2024. "Hierarchical porous SAPO-34 decorated with Mo and W oxides for concurrent transesterification-esterifications for efficient biodiesel production from acidic soybean oil," Renewable Energy, Elsevier, vol. 222(C).
    7. Wongwuttanasatian, Tanakorn & Jookjantra, Kittichai, 2020. "Effect of dual-frequency pulsed ultrasonic excitation and catalyst size for biodiesel production," Renewable Energy, Elsevier, vol. 152(C), pages 1220-1226.
    8. K. M. V. Ravi Teja & P. Issac Prasad & K. Vijaya Kumar Reddy & N. R. Banapurmath & Manzoore Elahi M. Soudagar & T. M. Yunus Khan & Irfan Anjum Badruddin, 2021. "Influence of Combustion Chamber Shapes and Nozzle Geometry on Performance, Emission, and Combustion Characteristics of CRDI Engine Powered with Biodiesel Blends," Sustainability, MDPI, vol. 13(17), pages 1-19, August.
    9. M. Mofijur & F. Kusumo & I. M. Rizwanul Fattah & H. M. Mahmudul & M. G. Rasul & A. H. Shamsuddin & T. M. I. Mahlia, 2020. "Resource Recovery from Waste Coffee Grounds Using Ultrasonic-Assisted Technology for Bioenergy Production," Energies, MDPI, vol. 13(7), pages 1-15, April.
    10. Md Modassir Khan & Arun Kumar Kadian & Rabindra Prasad Sharma & S M Mozammil Hasnain & Ahmed Mohamed & Adham E. Ragab & Ali Zare & Shatrudhan Pandey, 2023. "Emission Reduction and Performance Enhancement of CI Engine Propelled by Neem Biodiesel-Neem Oil-Decanol-Diesel Blends at High Injection Pressure," Sustainability, MDPI, vol. 15(11), pages 1-18, June.
    11. Luo, Sai & Xu, JingBo & Wang, Chen & Ji, Jie, 2023. "Experimental study of flame spread behavior and heat transfer mechanism over n-butanol fuel in trays of different widths," Energy, Elsevier, vol. 282(C).
    12. K. M. Akkoli & N. R. Banapurmath & Suresh G & Manzoore Elahi M. Soudagar & T. M. Yunus Khan & Maughal Ahmed Ali Baig & M. A. Mujtaba & Nazia Hossain & Kiran Shahapurkar & Ashraf Elfasakhany & Mishal A, 2021. "Effect of Producer Gas from Redgram Stalk and Combustion Chamber Types on the Emission and Performance Characteristics of Diesel Engine," Energies, MDPI, vol. 14(18), pages 1-17, September.
    13. Iftikhar Ahmad & Adil Sana & Manabu Kano & Izzat Iqbal Cheema & Brenno C. Menezes & Junaid Shahzad & Zahid Ullah & Muzammil Khan & Asad Habib, 2021. "Machine Learning Applications in Biofuels’ Life Cycle: Soil, Feedstock, Production, Consumption, and Emissions," Energies, MDPI, vol. 14(16), pages 1-27, August.
    14. Aboelazayem, Omar & Gadalla, Mamdouh & Saha, Basudeb, 2019. "Derivatisation-free characterisation and supercritical conversion of free fatty acids into biodiesel from high acid value waste cooking oil," Renewable Energy, Elsevier, vol. 143(C), pages 77-90.
    15. Çay, Yusuf & Korkmaz, Ibrahim & Çiçek, Adem & Kara, Fuat, 2013. "Prediction of engine performance and exhaust emissions for gasoline and methanol using artificial neural network," Energy, Elsevier, vol. 50(C), pages 177-186.
    16. Mahlia, T.M.I. & Syazmi, Z.A.H.S. & Mofijur, M. & Abas, A.E. Pg & Bilad, M.R. & Ong, Hwai Chyuan & Silitonga, A.S., 2020. "Patent landscape review on biodiesel production: Technology updates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    17. Naderi, Alireza & Qasemian, Ali & Shojaeefard, Mohammad Hasan & Samiezadeh, Saman & Younesi, Mostafa & Sohani, Ali & Hoseinzadeh, Siamak, 2021. "A smart load-speed sensitive cooling map to have a high- performance thermal management system in an internal combustion engine," Energy, Elsevier, vol. 229(C).
    18. Dong, Shengfei & Liu, Ziyu & Yang, Xiaoyi, 2024. "Exploration of hydrothermal liquefaction of multiple algae to improve bio-crude quality and carbohydrate utilization," Applied Energy, Elsevier, vol. 361(C).
    19. Assareh, Ehsanolah & Mousavi Asl, Seyed Sajad & Agarwal, Neha & Ahmadinejad, Mehrdad & Ghodrat, Maryam & Lee, Moonyong, 2023. "New optimized configuration for a hybrid PVT solar/electrolyzer/absorption chiller system utilizing the response surface method as a machine learning technique and multi-objective optimization," Energy, Elsevier, vol. 281(C).
    20. Burov, Nikita O. & Savelenko, Vsevolod D. & Ershov, Mikhail A. & Vikhritskaya, Anastasia O. & Tikhomirova, Ekaterina O. & Klimov, Nikita A. & Kapustin, Vladimir M. & Chernysheva, Elena A. & Sereda, Al, 2023. "Knowledge contribution from science to technology in the conceptualization model to produce sustainable aviation fuels from lignocellulosic biomass," Renewable Energy, Elsevier, vol. 215(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223024714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.