IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v286y2024ics036054422303027x.html
   My bibliography  Save this article

Rapid decomposition of methane hydrates induced by terahertz bidirectional pulse electric fields

Author

Listed:
  • Liang, Yunhang
  • Bi, Xueqing
  • Zhao, Yunlong
  • Tian, Runnan
  • Zhao, Peihe
  • Fang, Wenjing
  • Liu, Bing

Abstract

Electric field improving hydrates decomposition has broad applications in methane extraction and transportation, which benefits from polarization of water molecular and subsequent low energy cost. However, it is still challenging whether there are approaches to further accelerate decomposition of methane hydrates. Herein, molecular dynamics simulations are performed to investigate the effects of five electric fields on methane hydrates, including terahertz bidirectional pulsed electric field (BPEF), terahertz unidirectional pulsed electric field (PEF0.5), terahertz sinusoidal electric field (SEF), terahertz sinusoidal electric field with duty cycle of 50 % (SEF0.5) and static electric field (DC). We propose that BPEF, at amplitude of 0.06 V/Å and frequency of 18.5 THz, achieve highest efficiency in hydrate decomposition. The underlying mechanism is revealed to involve BPEF-induced structural phase transition of hydrate from crystalline to liquid due to resonance of electric field with vibration modes of water. Furthermore, Amplitudes of BPEF show positive correlation in promoting methane hydrate decomposition, while frequencies close to 1.8, 7.0 and 18.5 THz exhibit superior decomposition efficiency. Increasing amplitude from 0.12 to 0.16 at 1.8 THz accelerates the hydrate decomposition by 29-fold. These findings are expected to improve hydrate extraction and transportation and promote the application of terahertz electric field to hydrate domains.

Suggested Citation

  • Liang, Yunhang & Bi, Xueqing & Zhao, Yunlong & Tian, Runnan & Zhao, Peihe & Fang, Wenjing & Liu, Bing, 2024. "Rapid decomposition of methane hydrates induced by terahertz bidirectional pulse electric fields," Energy, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:energy:v:286:y:2024:i:c:s036054422303027x
    DOI: 10.1016/j.energy.2023.129633
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422303027X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129633?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Xin & Fang, Qingchao & Qiu, Zhengsong & Mi, Shiyou & Wang, Zhiyuan & Geng, Qi & Zhang, Yubin, 2022. "Experimental investigation on hydrate anti-agglomerant for oil-free systems in the production pipe of marine natural gas hydrates," Energy, Elsevier, vol. 242(C).
    2. Jianyang Wu & Fulong Ning & Thuat T. Trinh & Signe Kjelstrup & Thijs J. H. Vlugt & Jianying He & Bjørn H. Skallerud & Zhiliang Zhang, 2015. "Mechanical instability of monocrystalline and polycrystalline methane hydrates," Nature Communications, Nature, vol. 6(1), pages 1-10, December.
    3. Shi, Qiao & Lin, Yanwen & Hao, Yongchao & Song, Zixuan & Zhou, Ziyue & Fu, Yuequn & Zhang, Zhisen & Wu, Jianyang, 2023. "Unconventional growth of methane hydrates: A molecular dynamics and machine learning study," Energy, Elsevier, vol. 282(C).
    4. Song, Yongchen & Cheng, Chuanxiao & Zhao, Jiafei & Zhu, Zihao & Liu, Weiguo & Yang, Mingjun & Xue, Kaihua, 2015. "Evaluation of gas production from methane hydrates using depressurization, thermal stimulation and combined methods," Applied Energy, Elsevier, vol. 145(C), pages 265-277.
    5. Wu, Yongji & He, Yurong & Tang, Tianqi & Zhai, Ming, 2023. "Molecular dynamic simulations of methane hydrate formation between solid surfaces: Implications for methane storage," Energy, Elsevier, vol. 262(PB).
    6. Tobias M. Gasser & Alexander V. Thoeny & A. Dominic Fortes & Thomas Loerting, 2021. "Structural characterization of ice XIX as the second polymorph related to ice VI," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    7. Li, Xiao-Yan & Feng, Jing-Chun & Li, Xiao-Sen & Wang, Yi & Hu, Heng-Qi, 2022. "Experimental study of methane hydrate formation and decomposition in the porous medium with different thermal conductivities and grain sizes," Applied Energy, Elsevier, vol. 305(C).
    8. Wang, Haijun & Wu, Peng & Li, Yanghui & Liu, Weiguo & Pan, Xuelian & Li, Qingping & He, Yufa & Song, Yongchen, 2023. "Gas permeability variation during methane hydrate dissociation by depressurization in marine sediments," Energy, Elsevier, vol. 263(PB).
    9. Yang, Mingjun & Zhao, Jie & Zheng, Jia-nan & Song, Yongchen, 2019. "Hydrate reformation characteristics in natural gas hydrate dissociation process: A review," Applied Energy, Elsevier, vol. 256(C).
    10. Shi, Lingli & Li, Junhui & He, Yong & Lu, Jingsheng & Long, Zhen & Liang, Deqing, 2023. "Memory effect test and analysis in methane hydrates reformation process," Energy, Elsevier, vol. 272(C).
    11. Sun, Huiru & Chen, Bingbing & Li, Kehan & Song, Yongchen & Yang, Mingjun & Jiang, Lanlan & Yan, Jinyue, 2023. "Methane hydrate re-formation and blockage mechanism in a pore-level water-gas flow process," Energy, Elsevier, vol. 263(PC).
    12. Kou, Xuan & Li, Xiao-Sen & Wang, Yi & Zhang, Yu & Chen, Zhao-Yang, 2020. "Distribution and reformation characteristics of gas hydrate during hydrate dissociation by thermal stimulation and depressurization methods," Applied Energy, Elsevier, vol. 277(C).
    13. Fengyi, Mi & Zhongjin, He & Guosheng, Jiang & Fulong, Ning, 2023. "Molecular insights into the effects of lignin on methane hydrate formation in clay nanopores," Energy, Elsevier, vol. 276(C).
    14. Tobias M. Gasser & Alexander V. Thoeny & A. Dominic Fortes & Thomas Loerting, 2021. "Publisher Correction: Structural characterization of ice XIX as the second polymorph related to ice VI," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
    15. Li, Xiao-Sen & Xu, Chun-Gang & Zhang, Yu & Ruan, Xu-Ke & Li, Gang & Wang, Yi, 2016. "Investigation into gas production from natural gas hydrate: A review," Applied Energy, Elsevier, vol. 172(C), pages 286-322.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Peng & Li, Yanghui & Yu, Tao & Wu, Zhaoran & Huang, Lei & Wang, Haijun & Song, Yongchen, 2023. "Microstructure evolution and dynamic permeability anisotropy during hydrate dissociation in sediment under stress state," Energy, Elsevier, vol. 263(PE).
    2. Kou, Xuan & Feng, Jing-Chun & Li, Xiao-Sen & Wang, Yi & Chen, Zhao-Yang, 2022. "Visualization of interactions between depressurization-induced hydrate decomposition and heat/mass transfer," Energy, Elsevier, vol. 239(PC).
    3. Yang, Mingjun & Dong, Shuang & Zhao, Jie & Zheng, Jia-nan & Liu, Zheyuan & Song, Yongchen, 2021. "Ice behaviors and heat transfer characteristics during the isothermal production process of methane hydrate reservoirs by depressurization," Energy, Elsevier, vol. 232(C).
    4. Yang, Mingjun & Wang, Xinru & Pang, Weixin & Li, Kehan & Yu, Tao & Chen, Bingbing & Song, Yongchen, 2023. "The inhibit behavior of fluids migration on gas hydrate re-formation in depressurized-decomposed-reservoir," Energy, Elsevier, vol. 282(C).
    5. Li, Yanghui & Wang, Le & Xie, Yao & Wu, Peng & Liu, Tao & Huang, Lei & Zhang, Shuheng & Song, Yongchen, 2023. "Deformation characteristics of methane hydrate-bearing clayey and sandy sediments during depressurization dissociation," Energy, Elsevier, vol. 275(C).
    6. Li, Yanghui & Wei, Zhaosheng & Wang, Haijun & Wu, Peng & Zhang, Shuheng & You, Zeshao & Liu, Tao & Huang, Lei & Song, Yongchen, 2024. "Impact of hydrate spatial heterogeneity on gas permeability in hydrate-bearing sediments," Energy, Elsevier, vol. 293(C).
    7. Zhang, Zhaobin & Xu, Tao & Li, Shouding & Li, Xiao & Briceño Montilla, Maryelin Josefina & Lu, Cheng, 2023. "Comprehensive effects of heat and flow on the methane hydrate dissociation in porous media," Energy, Elsevier, vol. 265(C).
    8. Liu, Tao & Wu, Peng & You, Zeshao & Yu, Tao & Song, Qi & Song, Yuanxin & Li, Yanghui, 2023. "Deformation characteristics on anisotropic consolidated methane hydrate clayey-silty sediments of the South China Sea under heat injection," Energy, Elsevier, vol. 280(C).
    9. Zhu, Yi-Jian & Chu, Yan-Song & Huang, Xing & Wang, Ling-Ban & Wang, Xiao-Hui & Xiao, Peng & Sun, Yi-Fei & Pang, Wei-Xin & Li, Qing-Ping & Sun, Chang-Yu & Chen, Guang-Jin, 2023. "Stability of hydrate-bearing sediment during methane hydrate production by depressurization or intermittent CO2/N2 injection," Energy, Elsevier, vol. 269(C).
    10. Kou, Xuan & Feng, Jing-Chun & Li, Xiao-Sen & Wang, Yi & Chen, Zhao-Yang, 2022. "Memory effect of gas hydrate: Influencing factors of hydrate reformation and dissociation behaviors☆," Applied Energy, Elsevier, vol. 306(PA).
    11. Lei, Gang & Tang, Jiadi & Zhang, Ling & Wu, Qi & Li, Jun, 2024. "Effective thermal conductivity for hydrate-bearing sediments under stress and local thermal stimulation conditions: A novel analytical model," Energy, Elsevier, vol. 288(C).
    12. Yang, Ming & Wang, Yuze & Wu, Hui & Zhang, Pengwei & Ju, Xin, 2024. "Thermo-hydro-chemical modeling and analysis of methane extraction from fractured gas hydrate-bearing sediments," Energy, Elsevier, vol. 292(C).
    13. Wan, Qing-Cui & Yin, Zhenyuan & Gao, Qiang & Si, Hu & Li, Bo & Linga, Praveen, 2022. "Fluid production behavior from water-saturated hydrate-bearing sediments below the quadruple point of CH4 + H2O," Applied Energy, Elsevier, vol. 305(C).
    14. Cheng, Fanbao & Sun, Xiang & Li, Yanghui & Ju, Xin & Yang, Yaobin & Liu, Xuanji & Liu, Weiguo & Yang, Mingjun & Song, Yongchen, 2023. "Numerical analysis of coupled thermal-hydro-chemo-mechanical (THCM) behavior to joint production of marine gas hydrate and shallow gas," Energy, Elsevier, vol. 281(C).
    15. Lee, Joonseop & Lee, Dongyoung & Seo, Yongwon, 2021. "Experimental investigation of the exact role of large-molecule guest substances (LMGSs) in determining phase equilibria and structures of natural gas hydrates," Energy, Elsevier, vol. 215(PB).
    16. Xue, Kunpeng & Liu, Yu & Yu, Tao & Yang, Lei & Zhao, Jiafei & Song, Yongchen, 2023. "Numerical simulation of gas hydrate production in shenhu area using depressurization: The effect of reservoir permeability heterogeneity," Energy, Elsevier, vol. 271(C).
    17. Zheng, Ruyi & Li, Shuxia & Li, Qingping & Li, Xiaoli, 2018. "Study on the relations between controlling mechanisms and dissociation front of gas hydrate reservoirs," Applied Energy, Elsevier, vol. 215(C), pages 405-415.
    18. Olga Gaidukova & Sergei Misyura & Pavel Strizhak, 2022. "Key Areas of Gas Hydrates Study: Review," Energies, MDPI, vol. 15(5), pages 1-18, February.
    19. Zhao, Xin & Geng, Qi & Zhang, Zhen & Qiu, Zhengsong & Fang, Qingchao & Wang, Zhiyuan & Yan, Chuanliang & Ma, Yongle & Li, Yang, 2023. "Phase change material microcapsules for smart temperature regulation of drilling fluids for gas hydrate reservoirs," Energy, Elsevier, vol. 263(PB).
    20. Kou, Xuan & Zhang, Heng & Li, Xiao-Sen & Chen, Zhao-Yang & Wang, Yi, 2024. "Methane hydrate phase transition in marine clayey sediments: Enhanced structure change and solid migration," Applied Energy, Elsevier, vol. 368(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:286:y:2024:i:c:s036054422303027x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.