IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v293y2024ics0360544224004699.html
   My bibliography  Save this article

Anisotropy analysis of two-phase flow permeability in the multi-stage shear process of hydrate-bearing sediments

Author

Listed:
  • Wu, Peng
  • Chen, Yukun
  • Shang, Anran
  • Ding, Jiping
  • Wei, Jiangong
  • Liu, Weiguo
  • Li, Yanghui

Abstract

Natural gas hydrate is a promising energy resource for the future. However, due to the shallow burial and low-degree of consolidation, hydrate-bearing sediment (HBS) is prone to deform under stress. And this will lead to dynamic changes in reservoir permeability. In this study, the micro-structure of shearing HBS specimen with hydrate saturation of 45.1% under different confining pressures (1, 3 MPa) were obtained by the micro-focus CT, the micro-structure changes and two-phases permeability characteristics evolution were analyzed. The results show that with the increasing axial strain, the absolute permeability increase firstly and decrease. The capillary pressure in vertical direction is always larger than that in horizontal directions. During primary gas flooding and secondary water flooding, the gas-water relative permeability anisotropy of different direction gradually enhances, and reach maximum with the largest axial strain. At low effective confining pressure, the gas-water relative permeability in each direction does not vary with axial strain. At high effective confining pressure, the relative water permeability in each direction decreases with the increase of axial strain, the relative gas permeability in the horizontal direction increases with the increase of axial strain, and the relative gas permeability in the vertical direction has no obvious pattern.

Suggested Citation

  • Wu, Peng & Chen, Yukun & Shang, Anran & Ding, Jiping & Wei, Jiangong & Liu, Weiguo & Li, Yanghui, 2024. "Anisotropy analysis of two-phase flow permeability in the multi-stage shear process of hydrate-bearing sediments," Energy, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004699
    DOI: 10.1016/j.energy.2024.130697
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224004699
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130697?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Xiang & Luo, Tingting & Wang, Lei & Wang, Haijun & Song, Yongchen & Li, Yanghui, 2019. "Numerical simulation of gas recovery from a low-permeability hydrate reservoir by depressurization," Applied Energy, Elsevier, vol. 250(C), pages 7-18.
    2. Li, Yanghui & Hu, Wenkang & Tang, Haoran & Wu, Peng & Liu, Tao & You, Zeshao & Yu, Tao & Song, Yongchen, 2023. "Mechanical properties of the interstratified hydrate-bearing sediment in permafrost zones," Energy, Elsevier, vol. 282(C).
    3. Cheng, Fanbao & Sun, Xiang & Li, Yanghui & Ju, Xin & Yang, Yaobin & Liu, Xuanji & Liu, Weiguo & Yang, Mingjun & Song, Yongchen, 2023. "Numerical analysis of coupled thermal-hydro-chemo-mechanical (THCM) behavior to joint production of marine gas hydrate and shallow gas," Energy, Elsevier, vol. 281(C).
    4. Song, Yongchen & Cheng, Chuanxiao & Zhao, Jiafei & Zhu, Zihao & Liu, Weiguo & Yang, Mingjun & Xue, Kaihua, 2015. "Evaluation of gas production from methane hydrates using depressurization, thermal stimulation and combined methods," Applied Energy, Elsevier, vol. 145(C), pages 265-277.
    5. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    6. Wang, Haijun & Wu, Peng & Li, Yanghui & Liu, Weiguo & Pan, Xuelian & Li, Qingping & He, Yufa & Song, Yongchen, 2023. "Gas permeability variation during methane hydrate dissociation by depressurization in marine sediments," Energy, Elsevier, vol. 263(PB).
    7. Wang, Haijun & Liu, Weiguo & Wu, Peng & Pan, Xuelian & You, Zeshao & Lu, Jingsheng & Li, Yanghui, 2023. "Gas recovery from marine hydrate reservoir: Experimental investigation on gas flow patterns considering pressure effect," Energy, Elsevier, vol. 275(C).
    8. Cai, Jianchao & Zhang, Zhien & Wei, Wei & Guo, Dongming & Li, Shuai & Zhao, Peiqiang, 2019. "The critical factors for permeability-formation factor relation in reservoir rocks: Pore-throat ratio, tortuosity and connectivity," Energy, Elsevier, vol. 188(C).
    9. Liu, Tao & Tang, Haoran & Wu, Peng & Wang, Haijun & Song, Yuanxin & Li, Yanghui, 2023. "Acoustic characteristics on clayey-silty sediments of the South China Sea during methane hydrate formation and dissociation," Energy, Elsevier, vol. 282(C).
    10. Liu, Tao & Wu, Peng & You, Zeshao & Yu, Tao & Song, Qi & Song, Yuanxin & Li, Yanghui, 2023. "Deformation characteristics on anisotropic consolidated methane hydrate clayey-silty sediments of the South China Sea under heat injection," Energy, Elsevier, vol. 280(C).
    11. Liu, Weiguo & Song, Qi & Wu, Peng & Liu, Tao & Huang, Lei & Zhang, Shuheng & Li, Yanghui, 2023. "Triaxial tests on anisotropic consolidated methane hydrate-bearing clayey-silty sediments of the South China Sea," Energy, Elsevier, vol. 284(C).
    12. Zhao, Jiafei & Zhu, Zihao & Song, Yongchen & Liu, Weiguo & Zhang, Yi & Wang, Dayong, 2015. "Analyzing the process of gas production for natural gas hydrate using depressurization," Applied Energy, Elsevier, vol. 142(C), pages 125-134.
    13. Wu, Peng & Li, Yanghui & Yu, Tao & Wu, Zhaoran & Huang, Lei & Wang, Haijun & Song, Yongchen, 2023. "Microstructure evolution and dynamic permeability anisotropy during hydrate dissociation in sediment under stress state," Energy, Elsevier, vol. 263(PE).
    14. Li, Yanghui & Wang, Le & Xie, Yao & Wu, Peng & Liu, Tao & Huang, Lei & Zhang, Shuheng & Song, Yongchen, 2023. "Deformation characteristics of methane hydrate-bearing clayey and sandy sediments during depressurization dissociation," Energy, Elsevier, vol. 275(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Lei & Shen, Shi & Wu, Zhaoran & Wu, Dejun & Li, Yanghui, 2024. "Strength and creep characteristics of methane hydrate-bearing clayey silts of the South China Sea," Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yanghui & Wei, Zhaosheng & Wang, Haijun & Wu, Peng & Zhang, Shuheng & You, Zeshao & Liu, Tao & Huang, Lei & Song, Yongchen, 2024. "Impact of hydrate spatial heterogeneity on gas permeability in hydrate-bearing sediments," Energy, Elsevier, vol. 293(C).
    2. You, Zeshao & Li, Yanghui & Liu, Tao & Qu, Yong & Hu, Wenkang & Song, Yongchen, 2024. "Stress-strain response and deformation behavior of hydrate-bearing sands under different grain sizes: A particle-scale study using DEM," Energy, Elsevier, vol. 290(C).
    3. Wang, Lei & Shen, Shi & Wu, Zhaoran & Wu, Dejun & Li, Yanghui, 2024. "Strength and creep characteristics of methane hydrate-bearing clayey silts of the South China Sea," Energy, Elsevier, vol. 294(C).
    4. You, Zeshao & Li, Yanghui & Yang, Meixiao & Wu, Peng & Liu, Tao & Li, Jiayu & Hu, Wenkang & Song, Yongchen, 2024. "Investigation of particle-scale mechanical behavior of hydrate-bearing sands using DEM: Focus on hydrate habits," Energy, Elsevier, vol. 289(C).
    5. Liu, Tao & Wu, Peng & You, Zeshao & Yu, Tao & Song, Qi & Song, Yuanxin & Li, Yanghui, 2023. "Deformation characteristics on anisotropic consolidated methane hydrate clayey-silty sediments of the South China Sea under heat injection," Energy, Elsevier, vol. 280(C).
    6. Zhu, Yi-Jian & Chu, Yan-Song & Huang, Xing & Wang, Ling-Ban & Wang, Xiao-Hui & Xiao, Peng & Sun, Yi-Fei & Pang, Wei-Xin & Li, Qing-Ping & Sun, Chang-Yu & Chen, Guang-Jin, 2023. "Stability of hydrate-bearing sediment during methane hydrate production by depressurization or intermittent CO2/N2 injection," Energy, Elsevier, vol. 269(C).
    7. Li, Yanghui & Hu, Wenkang & Tang, Haoran & Wu, Peng & Liu, Tao & You, Zeshao & Yu, Tao & Song, Yongchen, 2023. "Mechanical properties of the interstratified hydrate-bearing sediment in permafrost zones," Energy, Elsevier, vol. 282(C).
    8. Cheng, Fanbao & Sun, Xiang & Li, Yanghui & Ju, Xin & Yang, Yaobin & Liu, Xuanji & Liu, Weiguo & Yang, Mingjun & Song, Yongchen, 2023. "Numerical analysis of coupled thermal-hydro-chemo-mechanical (THCM) behavior to joint production of marine gas hydrate and shallow gas," Energy, Elsevier, vol. 281(C).
    9. Liu, Weiguo & Song, Qi & Wu, Peng & Liu, Tao & Huang, Lei & Zhang, Shuheng & Li, Yanghui, 2023. "Triaxial tests on anisotropic consolidated methane hydrate-bearing clayey-silty sediments of the South China Sea," Energy, Elsevier, vol. 284(C).
    10. Yu, Tao & Guan, Guoqing & Abudula, Abuliti & Wang, Dayong, 2019. "3D visualization of fluid flow behaviors during methane hydrate extraction by hot water injection," Energy, Elsevier, vol. 188(C).
    11. Yang, Ming & Wang, Yuze & Wu, Hui & Zhang, Pengwei & Ju, Xin, 2024. "Thermo-hydro-chemical modeling and analysis of methane extraction from fractured gas hydrate-bearing sediments," Energy, Elsevier, vol. 292(C).
    12. Gong, Guangjun & Yang, Mingjun & Pang, Weixin & Zheng, Jia-nan & Song, Yongchen, 2024. "Dynamic optimization of real-time depressurization pathways in hydrate-bearing South Sea clay reservoirs," Energy, Elsevier, vol. 292(C).
    13. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu & Li, Gang, 2016. "Large scale experimental evaluation to methane hydrate dissociation below quadruple point in sandy sediment," Applied Energy, Elsevier, vol. 162(C), pages 372-381.
    14. Dong, Shuang & Yang, Mingjun & Chen, Mingkun & Zheng, Jia-nan & Song, Yongchen, 2022. "Thermodynamics analysis and temperature response mechanism during methane hydrate production by depressurization," Energy, Elsevier, vol. 241(C).
    15. Wang, Haijun & Liu, Weiguo & Wu, Peng & Pan, Xuelian & You, Zeshao & Lu, Jingsheng & Li, Yanghui, 2023. "Gas recovery from marine hydrate reservoir: Experimental investigation on gas flow patterns considering pressure effect," Energy, Elsevier, vol. 275(C).
    16. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhan, Lei & Li, Xiao-Yan, 2018. "Pilot-scale experimental evaluation of gas recovery from methane hydrate using cycling-depressurization scheme," Energy, Elsevier, vol. 160(C), pages 835-844.
    17. Zhao, Qi & Chen, Zhao-Yang & Li, Xiao-Sen & Xia, Zhi-Ming, 2023. "Experimental study of CO2 hydrate formation under an electrostatic field," Energy, Elsevier, vol. 272(C).
    18. Tan, Lin & Liu, Fang & Dai, Sheng & Yao, Junlan, 2024. "A bibliometric analysis of two-decade research efforts in turning natural gas hydrates into energy," Energy, Elsevier, vol. 299(C).
    19. Wang, Bin & Fan, Zhen & Wang, Pengfei & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2018. "Analysis of depressurization mode on gas recovery from methane hydrate deposits and the concomitant ice generation," Applied Energy, Elsevier, vol. 227(C), pages 624-633.
    20. Sun, Xiang & Li, Yanghui & Liu, Yu & Song, Yongchen, 2019. "The effects of compressibility of natural gas hydrate-bearing sediments on gas production using depressurization," Energy, Elsevier, vol. 185(C), pages 837-846.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.