IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v145y2015icp265-277.html
   My bibliography  Save this article

Evaluation of gas production from methane hydrates using depressurization, thermal stimulation and combined methods

Author

Listed:
  • Song, Yongchen
  • Cheng, Chuanxiao
  • Zhao, Jiafei
  • Zhu, Zihao
  • Liu, Weiguo
  • Yang, Mingjun
  • Xue, Kaihua

Abstract

To investigate the gas production from methane hydrate-bearing sediments, the gas production processes from methane hydrate in porous media using depressurization, two-cycle warm-water injection and a combination of the two methods were characterized in this study. The methane hydrates were formed in porous media with various initial hydrate saturation (Shi) in a pressure vessel. The percentage of gas production, rate of gas production, and energy efficiency were obtained and compared using the three methods. The driving force of the hydrate dissociation at different stages of depressurization was analyzed and ice formation during the gas production was observed. For the two-cycle warm-water-injection method, the percentage of gas production and the energy efficiency increased with increasing of Shi. However, due to the large amount of warm water needed to heat the porous media at the dissociation site, the percentage of gas production was lower than the other two methods under the same experimental conditions. The experimental results proved that the combined method had obvious advantages for hydrate exploitation over the depressurization and warm-water-injection method in terms of the energy efficiency, percentage of gas production and average rate of gas production, and with increasing of Shi, the advantages are enhanced. For the Shi of 51.61%, the percentage of gas production reaches 74.87%, which had increments of 18.63% and 31.19% compared with the depressurization and warm-water-injection methods. The energy efficiency for the combined method were 31.47, 49.93 and 68.13 for Shi of 31.90%, 41.31% and 51.61%, respectively.

Suggested Citation

  • Song, Yongchen & Cheng, Chuanxiao & Zhao, Jiafei & Zhu, Zihao & Liu, Weiguo & Yang, Mingjun & Xue, Kaihua, 2015. "Evaluation of gas production from methane hydrates using depressurization, thermal stimulation and combined methods," Applied Energy, Elsevier, vol. 145(C), pages 265-277.
  • Handle: RePEc:eee:appene:v:145:y:2015:i:c:p:265-277
    DOI: 10.1016/j.apenergy.2015.02.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915002172
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.02.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Xingxing & Li, Shuxia & Zhang, Lina, 2012. "Sensitivity analysis of gas production from Class I hydrate reservoir by depressurization," Energy, Elsevier, vol. 39(1), pages 281-285.
    2. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    3. Jiafei Zhao & Chuanxiao Cheng & Yongchen Song & Weiguo Liu & Yu Liu & Kaihua Xue & Zihao Zhu & Zhi Yang & Dayong Wang & Mingjun Yang, 2012. "Heat Transfer Analysis of Methane Hydrate Sediment Dissociation in a Closed Reactor by a Thermal Method," Energies, MDPI, vol. 5(5), pages 1-17, May.
    4. Li, Xiao-Sen & Wang, Yi & Duan, Li-Ping & Li, Gang & Zhang, Yu & Huang, Ning-Sheng & Chen, Duo-Fu, 2012. "Experimental investigation into methane hydrate production during three-dimensional thermal huff and puff," Applied Energy, Elsevier, vol. 94(C), pages 48-57.
    5. Li, Xiao-Sen & Yang, Bo & Duan, Li-Ping & Li, Gang & Huang, Ning-Sheng & Zhang, Yu, 2013. "Experimental study on gas production from methane hydrate in porous media by SAGD method," Applied Energy, Elsevier, vol. 112(C), pages 1233-1240.
    6. Yuan, Qing & Sun, Chang-Yu & Yang, Xin & Ma, Ping-Chuan & Ma, Zheng-Wei & Liu, Bei & Ma, Qing-Lan & Yang, Lan-Ying & Chen, Guang-Jin, 2012. "Recovery of methane from hydrate reservoir with gaseous carbon dioxide using a three-dimensional middle-size reactor," Energy, Elsevier, vol. 40(1), pages 47-58.
    7. Wang, Yi & Li, Xiao-Sen & Li, Gang & Zhang, Yu & Li, Bo & Chen, Zhao-Yang, 2013. "Experimental investigation into methane hydrate production during three-dimensional thermal stimulation with five-spot well system," Applied Energy, Elsevier, vol. 110(C), pages 90-97.
    8. Li, Xiao-Sen & Li, Bo & Li, Gang & Yang, Bo, 2012. "Numerical simulation of gas production potential from permafrost hydrate deposits by huff and puff method in a single horizontal well in Qilian Mountain, Qinghai province," Energy, Elsevier, vol. 40(1), pages 59-75.
    9. Li, Gang & Li, Xiao-Sen & Li, Bo & Wang, Yi, 2014. "Methane hydrate dissociation using inverted five-spot water flooding method in cubic hydrate simulator," Energy, Elsevier, vol. 64(C), pages 298-306.
    10. Zhao, Jiafei & Zhu, Zihao & Song, Yongchen & Liu, Weiguo & Zhang, Yi & Wang, Dayong, 2015. "Analyzing the process of gas production for natural gas hydrate using depressurization," Applied Energy, Elsevier, vol. 142(C), pages 125-134.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiao-Sen & Xu, Chun-Gang & Zhang, Yu & Ruan, Xu-Ke & Li, Gang & Wang, Yi, 2016. "Investigation into gas production from natural gas hydrate: A review," Applied Energy, Elsevier, vol. 172(C), pages 286-322.
    2. Song, Yongchen & Yang, Lei & Zhao, Jiafei & Liu, Weiguo & Yang, Mingjun & Li, Yanghui & Liu, Yu & Li, Qingping, 2014. "The status of natural gas hydrate research in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 778-791.
    3. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu & Li, Gang, 2015. "Analytic modeling and large-scale experimental study of mass and heat transfer during hydrate dissociation in sediment with different dissociation methods," Energy, Elsevier, vol. 90(P2), pages 1931-1948.
    4. Yun-Pei Liang & Shu Liu & Qing-Cui Wan & Bo Li & Hang Liu & Xiao Han, 2018. "Comparison and Optimization of Methane Hydrate Production Process Using Different Methods in a Single Vertical Well," Energies, MDPI, vol. 12(1), pages 1-21, December.
    5. Chong, Zheng Rong & Yang, She Hern Bryan & Babu, Ponnivalavan & Linga, Praveen & Li, Xiao-Sen, 2016. "Review of natural gas hydrates as an energy resource: Prospects and challenges," Applied Energy, Elsevier, vol. 162(C), pages 1633-1652.
    6. Nair, Vishnu Chandrasekharan & Prasad, Siddhant Kumar & Kumar, Rajnish & Sangwai, Jitendra S., 2018. "Energy recovery from simulated clayey gas hydrate reservoir using depressurization by constant rate gas release, thermal stimulation and their combinations," Applied Energy, Elsevier, vol. 225(C), pages 755-768.
    7. Zhixue Sun & Ying Xin & Qiang Sun & Ruolong Ma & Jianguang Zhang & Shuhuan Lv & Mingyu Cai & Haoxuan Wang, 2016. "Numerical Simulation of the Depressurization Process of a Natural Gas Hydrate Reservoir: An Attempt at Optimization of Field Operational Factors with Multiple Wells in a Real 3D Geological Model," Energies, MDPI, vol. 9(9), pages 1-20, September.
    8. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu & Li, Gang, 2016. "Large scale experimental evaluation to methane hydrate dissociation below quadruple point in sandy sediment," Applied Energy, Elsevier, vol. 162(C), pages 372-381.
    9. Zheng, Ruyi & Li, Shuxia & Li, Qingping & Li, Xiaoli, 2018. "Study on the relations between controlling mechanisms and dissociation front of gas hydrate reservoirs," Applied Energy, Elsevier, vol. 215(C), pages 405-415.
    10. Yu, Tao & Guan, Guoqing & Abudula, Abuliti & Wang, Dayong & Song, Yongchen, 2021. "Numerical evaluation of free gas accumulation behavior in a reservoir during methane hydrate production using a multiple-well system," Energy, Elsevier, vol. 218(C).
    11. Roostaie, M. & Leonenko, Y., 2020. "Gas production from methane hydrates upon thermal stimulation; an analytical study employing radial coordinates," Energy, Elsevier, vol. 194(C).
    12. Li, Bo & Liang, Yun-Pei & Li, Xiao-Sen & Zhou, Lei, 2016. "A pilot-scale study of gas production from hydrate deposits with two-spot horizontal well system," Applied Energy, Elsevier, vol. 176(C), pages 12-21.
    13. Li, Gang & Li, Xiao-Sen & Li, Bo & Wang, Yi, 2014. "Methane hydrate dissociation using inverted five-spot water flooding method in cubic hydrate simulator," Energy, Elsevier, vol. 64(C), pages 298-306.
    14. Chong, Zheng Rong & Zhao, Jianzhong & Chan, Jian Hua Rudi & Yin, Zhenyuan & Linga, Praveen, 2018. "Effect of horizontal wellbore on the production behavior from marine hydrate bearing sediment," Applied Energy, Elsevier, vol. 214(C), pages 117-130.
    15. Li, Bo & Li, Xiao-Sen & Li, Gang & Feng, Jing-Chun & Wang, Yi, 2014. "Depressurization induced gas production from hydrate deposits with low gas saturation in a pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 129(C), pages 274-286.
    16. Yu, Tao & Guan, Guoqing & Abudula, Abuliti & Yoshida, Akihiro & Wang, Dayong & Song, Yongchen, 2019. "Gas recovery enhancement from methane hydrate reservoir in the Nankai Trough using vertical wells," Energy, Elsevier, vol. 166(C), pages 834-844.
    17. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen & Li, Gang & Zhang, Yu, 2015. "Three dimensional experimental and numerical investigations into hydrate dissociation in sandy reservoir with dual horizontal wells," Energy, Elsevier, vol. 90(P1), pages 836-845.
    18. Zhu, Yi-Jian & Chu, Yan-Song & Huang, Xing & Wang, Ling-Ban & Wang, Xiao-Hui & Xiao, Peng & Sun, Yi-Fei & Pang, Wei-Xin & Li, Qing-Ping & Sun, Chang-Yu & Chen, Guang-Jin, 2023. "Stability of hydrate-bearing sediment during methane hydrate production by depressurization or intermittent CO2/N2 injection," Energy, Elsevier, vol. 269(C).
    19. Chen, Xuyue & Yang, Jin & Gao, Deli & Hong, Yuqun & Zou, Yiqi & Du, Xu, 2020. "Unlocking the deepwater natural gas hydrate's commercial potential with extended reach wells from shallow water: Review and an innovative method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    20. Sun, Zhen-Feng & Li, Nan & Jia, Shuai & Cui, Jin-Long & Yuan, Qing & Sun, Chang-Yu & Chen, Guang-Jin, 2019. "A novel method to enhance methane hydrate exploitation efficiency via forming impermeable overlying CO2 hydrate cap," Applied Energy, Elsevier, vol. 240(C), pages 842-850.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:145:y:2015:i:c:p:265-277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.